Atomic Structure

 A Helium atomC2010 - Doug Gilliland
The Physical Science Series

A Short Review of Atomic Theory

Over the past century

scientist have discovered
that the atom is composed
of 3 subatomic particles:

+ Protons Neutrons
- Electrons

The Proton

1) Symbol $=p^{+}$
2) Relative Mass $=1$ Atomic Mass Unit (AMCI).

Actual mass $=1.674 \times 10-24 \mathrm{~g}$
3) Location: Inside the nucleus
4) Electrical charge: Positive.
5) Importance: The atomic number which is the identity of the element.
6) Discovered by: Ernest Rutherford in 1909

- The Electron

1) Symbol $=e-$
2) Relative Mass $=1 / 1836$ Atomic Mass Unit.

Actual mass $=9.11 \times 10-28 \mathrm{~g}$
3) Location: Energy level outside the nucleus 4) Electrical charge: Negative.
5) Importance: The number of electrons located in the last energy level determine the chemical activity of the element.
6) Discovered by: J.J.Thomson in 1897

The Neutron

1) Symbol $=n$
2) Relative Mass $=1$ Atomic Mass Unit (AMC1).

Actual mass $=1.675 \times 10-24 \mathrm{~g}$
3) Location: Inside the nucleus
4) Electrical charge: Neutral.
5) Importance: Is responsible for isotopes
(atoms of the same element with different numbers of neutrons.
6) Discovered by: James Chadwick in 1932

An element's Square on the Periodic Table

When rounded to a whole number it is the total number of protons \& neutrons added together.
nucleus

Fill in the table of p^{+}, no and e-.

Element	Protos	㖪	letom	Henent	Protos		
Sther	47	61	47	zine	30	35	30
Ssstum	19	20	19	uranum	92	146	92
veon	10	10	10	codd	79	118	79
Iydogen	1	\bigcirc	1	Fluome	9	10	9
Sulfur	16	16	16	Ccaium	55	78	55

Isotopes

- Isotopes are atoms of the same element that have different masses due to having different numbers of neutrons.
-The atomic mass (weight) on the periodic table is the average of the abundance of all the isotopes of an element.

Isotope:

Abundance: 99.985%
0.014%
0.001%

Isotopes
monnanitan

The Bohr Model of the Atom The Bohr Model places

 protons and neutrons in the nucleus and electrons in energy levels around the nucleus. Before you can learn how to draw a Bohr model of an atom you must learn a little about the Periodic Table of Elements.

Periods and Families

Periods 1-7 run across the periodic table.
The period number is the number of electron energy levels.
All elements of a period have the same number of e- energy levels.

Groups (aka Families) run down the table.
Members of a group (with the exception of He) have the same number of electrons in their outside energy level.

These e- are called valence electrons.

Fill in the table with e- energy levels \& valence e-

element	e- energy levels	valence e-	element	e- energy levels	valence e-
Ca	4	2	C	2	4
F	2	7	P	3	5
Al	3	3	Rn	6	8
K	4	1	H	1	1

Through experimentation Nails Bohr was able to determine the
Maximum number of electrons in each energy level:

energy level	1st	and	3 rd	4th	5 th	6 th	7 th
maximum number of electrons	2	8	18	32	18	8	2

Drawing a Bohr Model of a Strontium atom

 Draw a circle to represent the nucleus. Inside it write in how many protons and neutrons in a strontium atom.

Step

Drawing a Bohr Model of a Strontium atom

Draw the correct number of e- energy levels in the atom (Period \#). Draw only a section of the circle to represent the energy level.

Step

Drawing a Bohr Model of a Strontium atom

Fill in the last energy level with the correct number of electrons (group A number).
You always do the last e-energy level first!

Drawing a Bohr Model of a Strontium atom

Go to the first e-energy level and fill it with the maximum number of electrons. Do this with the others energy levels until you get to the and to the last energy level.

Drawing a Bohr Model of a Strontium atom

 Add up the number of e- you have and subtract it from the total number of $e-$ in a Sr atom (atomic number). Place those $\mathrm{e}-\mathrm{in}$ that and to thelast energy level.$$
\begin{array}{r}
38 \mathrm{e}- \\
-30 e- \\
\hline 8 \mathrm{e}-
\end{array}
$$

Draw a Bohr Model of:

Aluminum

Bromine

