# CHAPTER 6 

 REVIEW QUESTIONSMr. Gilliland - PreAICE Chemistry @ SHS

1) Nitrogen monoxide and carbon monoxide react to produce nitrogen gas and carbon dioxide. If $67.2 \mathrm{dm}^{3}$ of nitrogen monoxide reacts with $62.5 \mathrm{dm}^{3}$ of carbon monoxide:
$2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{CO}_{2}(\mathrm{~g})$ CO a. Which reactant is the limiting reagent?

$67.2 \mathrm{dm}^{3}$ of CO is required...

but you only have $62.5 \mathrm{dm}^{3}$ of CO $4.7 \mathrm{dm}^{3} \mathrm{NO}$ b. How much of the excess reagent will be left over after the reaction? | $62.5 \mathrm{dm}^{3} C O$ | 1 mote $C O$ | 2 mote NO | $24 \mathrm{dm}^{3} \mathrm{NO}$ |
| :---: | :---: | :---: | :---: |
| 1 | $24 \mathrm{dm}^{3} \mathrm{CO}$ | 2 mote $C O$ | 1 mote NO | $67.2 \mathrm{dm}^{3} \mathrm{NO}$ is available $-62.5 \mathrm{dm}^{3} \mathrm{NO}$ is needed!

$2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{CO}_{2}(\mathrm{~g})$ $31 \mathrm{dm}^{3} \mathrm{~N}_{2}$. How many $\mathrm{dm}^{3}$ and grams of $\mathrm{N}_{2}$ ?
$36 \mathrm{~g} \mathrm{~N}_{2}$


$62.5 \mathrm{dm}^{3} \mathrm{CO}_{2}$
$115 \mathrm{~g} \mathrm{CO}_{2}$ . How many $\mathrm{dm}^{3}$ and grams of $\mathrm{CO}_{2}$ ?

| $62.5 \mathrm{dm}^{3} \mathrm{CO}$ | 1 mole CO | 2 mole CO | $24 \mathrm{dm}^{3} \mathrm{CO}_{2}$ |
| :---: | :---: | :---: | :---: |
| 1 | $24 \mathrm{dm}^{3} \mathrm{CO}$ | 2 mole CO | 1 mole $-\mathrm{CO}_{2}$ |


$2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{CO}_{2}(\mathrm{~g})$

## e. If $26.7 \mathrm{dm}^{3}$ of $\mathrm{CO}_{2}$ was produced, what is the percent yield?

Actual yield $=26.7 \mathrm{dm}^{3}$
Ideal yield $=62.5 \mathrm{dm}^{3} \times 100=42.7 \%$
2) You want to produce 1.000 kg of aluminum oxide.

$$
4 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

529.2 g a. How many grams of Al will be required?

$353 \mathrm{dm}^{3}$ b. How many $\mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ will be required?

| 1000. $\mathrm{g} \mathrm{Al}_{2} \mathrm{O}_{3}$ | 1 mole $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 3 mole $\mathrm{O}_{2}$ | $24 \mathrm{dm}^{3} \mathrm{O}_{2}$ |
| :---: | :---: | :---: | :---: |
| 1 | $101.96 \mathrm{~g} \mathrm{At}_{2} \mathrm{O}_{3}$ | 2 mote $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 1 mole $\mathrm{O}_{2}$ |

c. If you obtained 893 g of Al 2 O 3 , what is your percent yield?
actual yield $=893 \mathrm{~g} \times 100=89.3 \%$ ideal yield $=1000 \mathrm{~g}$
3) The average pencil contains 1.1 g of carbon.
a. Moles of carbon: 0.092 moles of $C$

| 1.1 grams $G$ | 1 mole $C$ |
| :---: | :---: |
| 1 | $12.011 \mathrm{~g} G$ |

b. Atoms of carbon: $5.5 \times 10^{22}$ atoms of $C$ | 1.1 grams - | 1 mole $G$ | $6.02 \times 10^{23}$ atoms of $C$ |
| :---: | :---: | :---: |
| 1 | 12.011 g C | 1 mole $G$ |

4) A compound is composed of $43.7 \%$ P \& $56.3 \% 0$ and has the molar mass of $282 \mathrm{~g} /$ mole. Empirical formula:
100. grams of the compound would have: 43.7 g of P 43.7 g of $P, 1$ mole of $P$

$$
\begin{array}{|l|l|l}
1 & 30.97 \text { goof } P
\end{array}=\frac{1.41 \text { moles } P}{1.41 \text { moles }}=\begin{aligned}
& 1 \mathrm{P} \\
& \frac{\times 2}{2 P}
\end{aligned}
$$

100. grams of the compound would have: 56.3 g of $O$ $\frac{56.3 \mathrm{~g} \text { of } \theta}{1} \frac{1 \text { mole of } O}{15.999 \mathrm{~g} \text { of } \theta}=\frac{3.51 \text { moles } O}{1.41 \text { moles }}=\frac{2.490}{\frac{\times 2}{50}}$ Empirical formula: $\mathrm{P}_{2} \mathrm{O}_{5}$

## Empirical formula: $\mathrm{P}_{2} \mathrm{O}_{5}$

## Molar Masses:

Molecular Formula $=284 \mathrm{~g}$
Empirical Formula $=141.94 \mathrm{~g}$

$$
=2.00
$$

$$
\text { Empirical Formula }=141.94 \mathrm{~g}
$$



Molecular Formula $=\mathrm{P}_{4} \mathrm{O}_{10}$
5) A solution is made by dissolving 23.00 g of sodium hydroxide in $1,350 \mathrm{~cm}^{3}$ of solution.
a. Moles of sodium hydroxide used:
$\frac{23.00 \mathrm{~g} \mathrm{NaOH}}{1} \frac{1 \text { mole } \mathrm{NaOH}}{40.00-\mathrm{g} \mathrm{NaOH}}=0.5750$ moles NaOH
b. Molarity of the solution:
0.5750 moles $\mathrm{NaOH}, 1000 \mathrm{~cm}^{3}=0.426$ moles $=0.426 \mathrm{M}$ $1,350 \mathrm{em}^{3}$ solution $1 \mathrm{~L} \quad 1 \mathrm{~L}$ solution

In the lab, 56.86 g of aluminum bromide and 34.28 grams of sodium hydroxide are reacted. $\mathrm{AlBr}_{3(\mathrm{aq})}+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \downarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{NaBr}_{(\mathrm{aq})}$ a. Which is the limiting reagent? Aluminum Bromide | 56.86 g AlBr | 1 mole $\mathrm{AlBr}_{3}$ | 3 mole NaOH | 40.00 g NaOH |
| :---: | :---: | :---: | :---: |
| 1 | $266.69 \mathrm{~g} \mathrm{AlBr}_{3}$ | 1 mole $\mathrm{AlBr}_{3}$ | 1 mole NaOH |

25.58 g of NaOH were required... but you had 34.28 grams.
b. How many grams of excess reactant is left over? Mass of NaOH available: 34.28 grams. - Mass of NaOH used: 25.58 grams. Mass of NaOH in excess: 8.70 grams.
56.86 g
$\left.\mathrm{AlBr}_{3(\mathrm{aq})}+3 \mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \perp \mathrm{Al(OH}\right)_{3}(\mathrm{~s})+3 \mathrm{NaBr}_{(\mathrm{aq})}$ c. How many grams of aluminum hydroxide will form?
 16.63 grams of aluminum oxide
c. How many grams of sodium bromide will form?
 65.81 grams of sodium bromide d. How many moles of each product will form? $\begin{array}{ll}16.63 \mathrm{~g} \mathrm{Al} & \mathrm{O}_{3}\end{array} \frac{1 \text { mole } \mathrm{Al}_{2} \mathrm{O}_{3}}{78.004-\mathrm{g} \mathrm{Al}_{2} \mathrm{O}_{3}} \frac{65.81 \mathrm{~g} \mathrm{NaBr} 1 \mathrm{~mole} \mathrm{NaBr}}{1} \frac{102.89-\mathrm{g} \mathrm{NaBr}}{1}$
0.2132 mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$
0.6396 mole of NaBr

