CHAPTER 6 REVIEW QUESTIONS

Mr. Gilliland – PreAICE Chemistry @ SHS

1) Nitrogen monoxide and carbon monoxide react to produce nitrogen gas and carbon dioxide. If 67.2 dm³ of nitrogen monoxide reacts with 62.5 dm³ of carbon monoxide:

 $2NO_{(q)} + 2CO_{(g)} \rightarrow N_{2(g)} + 2CO_{2(g)}$ <u>co</u> a. Which reactant is the limiting reagent? 67.2 dm³ NO₁ 1 mole NO₁ 2 mole CO₁ 24 dm³ CO ¹24 dm³ NO¹ 2 mole NO¹ 1 mole CO 67.2 dm³ of CO is required... but you only have 62.5 dm³ of CO 4.7 dm³ NO b. How much of the excess reagent will be left over after the reaction? 62.5 dm³ CO₁ 1 mole CO₁ 2 mole NO₁ 24 dm³ NO 24 dm³ CO¹ 2 mole CO¹ 1 mole NO 1 67.2 dm³ NO is available - 62.5 dm³ NO is needed!

62.5 dm³ CO $2NO_{(g)} + 2CO_{(g)} \rightarrow N_{2(g)} + 2CO_{2(g)}$ $\frac{31}{36} \frac{dm^3}{N_2} \frac{N_2}{c}$. How many dm³ and grams of N₂? 62.5 dm^3 CO 1 mole CO 1 mole N₂ 24 dm³ N₂ 24 dm³ CO 2 mole CO 1 mole N₂ to convert to 31 dm³ N₂ | 1 mole N₂ | 28.014 g N₂ grams: 1 24 dm³ N₂ 1 mole N₂ 62.5 dm³ CO²d. How many dm³ and grams of CO₂? 62.5 $\frac{dm^3}{CO}$ 1 mole CO 2 mole CO 2 24 dm³ CO 2 24 dm³ CO 2 mole CO 1 mole CO₂ to convert to 62.5 dm³ CO₂ 1 mole CO₂ 44.010 g CO₂ grams: $24 \text{ dm}^3 \text{ CO}_2$ 1 mole CO₂ 1

2NO_(g) + 2CO_(g) → N_{2(g)} + 2CO_{2(g)} e. If 26.7 dm³ of CO₂ was produced,what is the percent yield?

Actual yield = $26.7 \text{ dm}^3 \times 100 = 42.7\%$ Ideal yield = $62.5 \text{ dm}^3 \times 100 = 42.7\%$ 2) You want to produce 1.000 kg of aluminum oxide.

 $4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$ <u>529.2 g</u> a. How many grams of Al will be required? <u>353 dm³ b. How many dm³ of O₂ will be required?</u> c. If you obtained 893 g of Al2O3, what is your percent yield? actual yield = 893 g ideal yield = 1000. g × 100 = 89.3%

3) The average pencil contains 1.1 g of carbon.

a. Moles of carbon: 0.092 moles of C 1.1 grams C 1 mole C 1 12.011 g C

b. Atoms of carbon: 5.5 x 10^{22} atoms of C $\frac{1.1 \text{ grams C}}{1} \quad 1 \text{ mole C} \quad 6.02 \times 10^{23} \text{ atoms of C} \\ 1 \quad 12.011 \text{ g C} \quad 1 \text{ mole C}$

4) A compound is composed of 43.7% P & 56.3% O and has the molar mass of 282 g/mole. Empirical formula: 100. grams of the compound would have: 43.7 g of P $\frac{43.7 \text{ g of P}}{1} = \frac{1 \text{ mole of P}}{1.41 \text{ moles P}} = \frac{1.41 \text{ moles P}}{1.41 \text{ moles}} = 1 \text{ P} \times 2$ 2 P 00. grams of the conduct $\frac{56.3 \text{ g of } 0}{1}$ 1 mole of 0 1 15.999 g of 0 = $\frac{3.51 \text{ moles } 0}{1.41 \text{ moles}}$ = $\frac{2.49 \text{ } 0}{\frac{\text{x2}}{5 \text{ } 0}}$ 100. grams of the compound would have: 56.3 g of O Empirical formula: P205

Empirical formula: P_2O_5 Molar Masses: Molecular Formula = 284 g Empirical Formula = 141.94g = 2.00

$P_2O_5 \times 2 = P_4O_{10}$

Molecular Formula = P_4O_{10}

5) A solution is made by dissolving 23.00 g of solution hydroxide in 1,350 cm³ of solution.

a. Moles of sodium hydroxide used:

 $\frac{23.00 \text{ g NaOH}}{1} + \frac{1 \text{ mole NaOH}}{40.00 \text{ g NaOH}} = 0.5750 \text{ moles NaOH}$

b. Molarity of the solution:

 $\frac{0.5750 \text{ moles NaOH 1000 cm}^3 = 0.426 \text{ moles} = 0.426 \text{ M}}{1,350 \text{ cm}^3 \text{ solution}} = 1 \text{ L} \text{ solution}$

In the lab, 56.86 g of aluminum bromide and 34.28 grams of sodium hydroxide are reacted. $AlBr_{3(aq)} + 3NaOH_{(aq)} \rightarrow \downarrow Al(OH)_{3(s)} + 3NaBr_{(aq)}$ a. Which is the limiting reagent? Aluminum Bromide 56.86 g AlBr₃ 1 mole AlBr₃ 3 mole NaOH 40.00 g NaOH 266.69 g AlBr3 1 mole AlBr3 1 mole Nac 25.58 g of NaOH were required... but you had 34.28 grams. b. How many grams of excess reactant is left over? Mass of NaOH available: 34.28 grams. - Mass of NaOH used: 25.58 grams. Mass of NaOH in excess: 8.70 grams.

56.86 g $AlBr_{3(aq)} + 3NaOH_{(aq)} \rightarrow \downarrow Al(OH)_{3(s)} + 3NaBr_{(aq)}$ c. How many grams of aluminum hydroxide will form? 56.86 g AlBr₃ 1 mole AlBr₃ 1 mole AlBr₃ 1 mole Al(OH)₃ 78.004 g Al(OH)₃ 266.69 g AlBr3 1 mole AlBr3 1 mole Al(OH)3 1 16.63 grams of aluminum oxide c. How many grams of sodium bromide will form? 56.86 g AlBr31 mole AlBr33 moles NaBr102.89 g NaBr1266.69 g AlBr31 mole AlBr31 mole NaBr 65.81 grams of sodium bromide d. How many moles of each product will form? 16.63 g Al_2O_3 | 1 mole Al}2O_3 65.81 g NaBr 1 mole NaBr 78.004 g Al₂O₃ 1 102.89 g NaBr 0.2132 mole of Al_2O_3 0.6396 mole of NaBr