Converting Empirical Formulae

Molecular Formulae

The empirical (observable) formula of a compound indicates the number and types of atoms in a molecule in their lowest ratio (the simplest formula).

- The empirical (observable) formula of a compound indicates the number and types of atoms in a molecule in their lowest ratio (the simplest formula).
- The molecular formula indicates the actual number and types of atoms in a molecule (the chemical formula).

- The empirical (observable) formula of a compound indicates the number and types of atoms in a molecule in their lowest ratio (the simplest formula).
- The molecular formula indicates the actual number and types of atoms in a molecule (the chemical formula).
- **Butane: molecular formula is C**₄H₁₀ **empirical formula is C**₂H₅

- The empirical (observable) formula of a compound indicates the number and types of atoms in a molecule in their lowest ratio (the simplest formula).
- The molecular formula indicates the actual number and types of atoms in a molecule (the chemical formula).
- **Butane: molecular formula is C**₄H₁₀ empirical formula is C₂H₅

The empirical formula can always be determined from the molecular formula, but the molecular formula cannot always be determined from the empirical formula.

Compound	Molecular Formula	Empirical Formula
Ethene		
Dinitrogen Pentoxide		
Glucose		
Hydrogen Peroxide		
Carbon Dioxide		
Dinitrogen Tetroxide		
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	
Dinitrogen Pentoxide		
Glucose		
Hydrogen Peroxide		
Carbon Dioxide		
Dinitrogen Tetroxide		
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide		
Glucose		
Hydrogen Peroxide		
Carbon Dioxide		
Dinitrogen Tetroxide		
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	
Glucose		
Hydrogen Peroxide		
Carbon Dioxide		
Dinitrogen Tetroxide		
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	N ₂ O ₅
Glucose		
Hydrogen Peroxide		
Carbon Dioxide		
Dinitrogen Tetroxide		
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	N ₂ O ₅
Glucose	C ₆ H ₁₂ O ₆	
Hydrogen Peroxide		
Carbon Dioxide		
Dinitrogen Tetroxide		
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	N ₂ O ₅
Glucose	C ₆ H ₁₂ O ₆	CH ₂ O
Hydrogen Peroxide		
Carbon Dioxide		
Dinitrogen Tetroxide		
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	N ₂ O ₅
Glucose	C ₆ H ₁₂ O ₆	CH ₂ O
Hydrogen Peroxide	H ₂ O ₂	
Carbon Dioxide		
Dinitrogen Tetroxide		
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	N ₂ O ₅
Glucose	C ₆ H ₁₂ O ₆	CH ₂ O
Hydrogen Peroxide	H ₂ O ₂	НО
Carbon Dioxide		
Dinitrogen Tetroxide		
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	N ₂ O ₅
Glucose	C ₆ H ₁₂ O ₆	CH ₂ O
Hydrogen Peroxide	H ₂ O ₂	НО
Carbon Dioxide	CO ₂	
Dinitrogen Tetroxide		
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	N ₂ O ₅
Glucose	C ₆ H ₁₂ O ₆	CH ₂ O
Hydrogen Peroxide	H ₂ O ₂	НО
Carbon Dioxide	CO ₂	CO ₂
Dinitrogen Tetroxide		
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	N ₂ O ₅
Glucose	C ₆ H ₁₂ O ₆	CH ₂ O
Hydrogen Peroxide	H ₂ O ₂	НО
Carbon Dioxide	CO ₂	CO ₂
Dinitrogen Tetroxide	N ₂ O ₄	
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	N ₂ O ₅
Glucose	C ₆ H ₁₂ O ₆	CH ₂ O
Hydrogen Peroxide	H ₂ O ₂	НО
Carbon Dioxide	CO ₂	CO ₂
Dinitrogen Tetroxide	N ₂ O ₄	NO ₂
Hexane		

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	N ₂ O ₅
Glucose	C ₆ H ₁₂ O ₆	CH ₂ O
Hydrogen Peroxide	H ₂ O ₂	НО
Carbon Dioxide	CO ₂	CO ₂
Dinitrogen Tetroxide	N ₂ O ₄	NO ₂
Hexane	C ₆ H ₁₄	

Compound	Molecular Formula	Empirical Formula
Ethene	C ₂ H ₆	CH ₃
Dinitrogen Pentoxide	N ₂ O ₅	N ₂ O ₅
Glucose	C ₆ H ₁₂ O ₆	CH ₂ 0
Hydrogen Peroxide	H ₂ O ₂	HO
Carbon Dioxide	CO ₂	CO ₂
Dinitrogen Tetroxide	N ₂ O ₄	NO ₂
Hexane	C ₆ H ₁₄	C ₃ H ₇

[1. Find the percent composition of each element in the compound.

Find the percent composition of each element in the compound.
Assume you have 100.00 grams of the compound.

- $\{$ 1. Find the percent composition of each element in the compound.
- [2. Assume you have 100.00 grams of the compound.
- **3. Change your percent to grams by multiplying times one hundred.**

- [1. Find the percent composition of each element in the compound.
- [2. Assume you have 100.00 grams of the compound.
- [3. Change your percent to grams by multiplying times one hundred.
- (4) Use dimensional analysis to convert your grams of each element to moles of each element.

- [1. Find the percent composition of each element in the compound.
- [2. Assume you have 100.00 grams of the compound.
- **3.** Change your percent to grams by multiplying times one hundred.
- (4) Use dimensional analysis to convert your grams of each element to moles of each element.
- [5] Pick the <u>lowest</u> number of moles and divide each of the moles by that number of moles.

- $\{$ 1. Find the percent composition of each element in the compound.
- [2. Assume you have 100.00 grams of the compound.
- **3.** Change your percent to grams by multiplying times one hundred.
- 4) Use dimensional analysis to convert your grams of each element to moles of each element.
- [5] Pick the <u>lowest number of moles and divide each of the moles</u> by that number of moles.
- You now have the subscripts for the Empirical formula.

Converting Percent yield to Empirical Formulae

Converting Percent yield to Empirical Formulae

[1] Calculate the molar mass of the empirical formulae.

(1) Calculate the molar mass of the empirical formulae.
(2) Find the molar mass of the molecular formulae.

- [1) Calculate the molar mass of the empirical formulae.
- [2] Find the molar mass of the molecular formulae.
- (3) Divide the molar mass of the molecular formulae by the molar mass of the empirical formulae. The quotient will be a number since grams cancels out.

- [1) Calculate the molar mass of the empirical formulae.
- [2] Find the molar mass of the molecular formulae.
- (3) Divide the molar mass of the molecular formulae by the molar mass of the empirical formulae. The quotient will be a number since grams cancels out.
- 4) Multiply each of the subscripts in the empirical formulae times the quotient.

- [1) Calculate the molar mass of the empirical formulae.
- [2] Find the molar mass of the molecular formulae.
- (3) Divide the molar mass of the molecular formulae by the molar mass of the empirical formulae. The quotient will be a number since grams cancels out.
- 4) Multiply each of the subscripts in the empirical formulae times the quotient.
- **[5)** You cannot reduce the molecular formula.

To determine the empirical formula of a compound you must first know the % composition of the elements in the compound. Antifreeze, composed of C,H,O, has the composition by mass of: 38.7% Carbon, 9.7% Hydrogen and 51.6% Oxygen.

To determine the empirical formula of a compound you must first know the % composition of the elements in the compound. Antifreeze, composed of C,H,O, has the composition by mass of: 38.7% Carbon, 9.7% Hydrogen and 51.6% Oxygen.

Assume you have a 100.00 gram sample of antifreeze. If so, you would have 38.7 g of C, 9.7 g of H, 51.6 g of O

- To determine the empirical formula of a compound you must first know the % composition of the elements in the compound. Antifreeze, composed of C,H,O, has the composition by mass of: 38.7% Carbon, 9.7% Hydrogen and 51.6% Oxygen.
- Assume you have a 100.00 gram sample of antifreeze. If so, you would have 38.7 g of C, 9.7 g of H, 51.6 g of O
- Using dimensional analysis convert these masses of elements to moles of elements. Your masses are your givens and your conversion factor will be 1mole/molar mass of element

Converting mass to moles38.7 g of C9.7 g of H51.6 g of O

Converting mass to moles 38.7 g of C 9.7 g of H 51.6 g of O $\frac{38.7 \text{g of C}}{1} \frac{1 \text{ mole}}{12.01 \text{ g}} = 3.22 \text{ moles of Carbon}$

Converting mass to moles 38.7 g of C 9.7 g of H 51.6 g of O $\frac{38.7 \text{g of C}}{1} \frac{1 \text{ mole}}{12.01 \text{ g}} = 3.22 \text{ moles of Carbon}$ $\frac{9.7 \text{g of H}}{1} \frac{1 \text{ mole}}{1.008 \text{ g}} = 9.6 \text{ moles of Hydrogen}$

Converting mass to moles 38.7 g of C 9.7 g of H 51.6 g of O $\frac{38.7 \text{g of C}}{1} \frac{1 \text{ mole}}{12.01 \text{ g}} = 3.22 \text{ moles of Carbon}$ $\frac{9.7 \text{g of H}}{1} \frac{1 \text{ mole}}{1.008 \text{ g}} = 9.6 \text{ moles of Hydrogen}$ 51.6g of 0 | 1 mole 1 15.99 g = 3.23 moles of Oxygen

Empirical Formula for Antifreeze:

Divide all by the smallest number of moles to find the number of each element in the empirical formula.

Empirical Formula for Antifreeze:

—[Divide all by the smallest number of moles to find the number of each element in the empirical formula.

3.22 moles of Carbon 3.22 moles

= 1.0 Carbon

Empirical Formula for Antifreeze:

—[Divide all by the smallest number of moles to find the number of each element in the empirical formula.

3.22 moles of Carbon 3.22 moles

= 1.0 Carbon

Empirical Formula for Antifreeze:

 $\frac{9.6 \text{ moles of Hydrogen}}{3.22 \text{ moles}} = 3.0$

= 3.0 Hydrogen

-Divide all by the smallest number of moles to find the number of each element in the empirical formula.

3.22 moles of Carbon 3.22 moles

= 1.0 Carbon

Empirical Formula for Antifreeze:

9.6 moles of Hydrogen= 3.0 Hydrogen3.22 moles

3.23 moles of Oxygen= 1.0 Oxygen3.22 moles

-Divide all by the smallest number of moles to find the number of each element in the empirical formula.

3.22 moles of Carbon 3.22 moles

= 1.0 Carbon

Empirical Formula for Antifreeze:

9.6 moles of Hydrogen 3.22 moles

3.23 moles of Oxygen 3.22 moles = 3.0 Hydrogen

= 1.0 Oxygen

—[Divide all by the smallest number of moles to find the number of each element in the empirical formula.

3.22 moles of Carbon 3.22 moles	= 1.0 Carbon	Empirical Formula for Antifreeze:
<u>9.6 moles of Hydrogen</u> 3.22 moles	= 3.0 Hydrogen	Res Honi
3.23 moles of Oxygen 3.22 moles	= 1.0 Oxygen	

-Divide all by the smallest number of moles to find the number of each element in the empirical formula.

3.22 moles of Carbon 3.22 moles	= 1.0 Carbon	Empirical Formula for Antifreeze:
<u>9.6 moles of Hydrogen</u> 3.22 moles	= 3.0 Hydrogen	SHO1
3.23 moles of Oxygen 3.22 moles	= 1.0 Oxygen	

—[Divide all by the smallest number of moles to find the number of each element in the empirical formula.

— Divide all by the smallest number of moles to find the number of each element in the empirical formula.

3.22 moles of Carbon 3.22 moles	= 1.0 Carbon	Empirical Formula for Antifreeze:
9.6 moles of Hydrogen 3.22 moles	= 3.0 Hydrogen	SHOO1
<u>3.23 moles of Oxygen</u> 3.22 moles	= 1.0 Oxygen note: D	on't write 1's in subscripts
		except here.

Calculate the molar mass of the Empirical formula. 1 C = 12.01 g + 3 H = 3.02 g + 1 O = 16.00g = 31.03 g/mol

Calculate the molar mass of the Empirical formula. 1 C = 12.01 g + 3 H = 3.02 g + 1 O = 16.00g = 31.03 g/mol Look up the molar mass of antifreeze. Molar mass = 62.06 g/mol

Calculate the molar mass of the Empirical formula. 1 C = 12.01 g + 3 H = 3.02 g + 1 O = 16.00g = 31.03 g/mol

Look up the molar mass of antifreeze. Molar mass = 62.06 g/mol

Divide the molar mass of molecular formula by the molar mass of the empirical formula then multiply that times all the subscripts in the empirical formula. 62.06 g/mole ÷ 31.03 g/mole = 2

$C_1H_3O_1 \times 2 = C_2H_6O_2$

[Calculate the molar mass of the Empirical formula. 1 C = 12.01 g + 3 H = 3.02 g + 1 O = 16.00g = 31.03 g/mol

Look up the molar mass of antifreeze. Molar mass = 62.06 g/mol

Divide the molar mass of molecular formula by the molar mass of the empirical formula then multiply that times all the subscripts in the empirical formula. 62.06 g/mole ÷ 31.03 g/mole = 2

Empirical formula = CH₃O

Empirical formula = CH_3O Molecular formula = $C_2H_6O_2$

Empirical formula = CH_3O Molecular formula = $C_2H_6O_2$

Н

Н

Н

Н

Н

H