2013 Mr. Gilliland - PreAlCE Chemistry @ SHS

## Siojuliomeisy

 A branch of chemistry that deals with the amounts of reactants and products involved in a chemical reation.2013 Mr. Gilliland - PreAICE Chemistry @ SHS

There are currently over 50 million man made compounds in the world. Aspirin, nylon and polyester in clothes, graphite tennis rackets, tires, plastics and thousands of other products you use are all synthetic.
The number of synthetic compounds has increased exponentially over the last century due to the increase in our knowledge of chemistry.

There are currently over 50 million man made compounds in the world. Aspirin, nylon and polyester in clothes, graphite tennis rackets, tires, plastics and thousands of other products you use are all synthetic.
The number of synthetic compounds has increased exponentially over the last century due to the increase in our knowledge of chemistry.
Substance
Originally made of:
Now it is:

There are currently over 50 million man made compounds in the world. Aspirin, nylon and polyester in clothes, graphite tennis rackets, tires, plastics and thousands of other products you use are all synthetic.
The number of synthetic compounds has increased exponentially over the last century due to the increase in our knowledge of chemistry.

| Substance | Originally made of: | Now it is: |
| :---: | :---: | :---: |
| aspirin | bark of a willow tree | synthesized |

There are currently over 50 million man made compounds in the world. Aspirin, nylon and polyester in clothes, graphite tennis rackets, tires, plastics and thousands of other products you use are all synthetic.
The number of synthetic compounds has increased exponentially over the last century due to the increase in our knowledge of chemistry.

| Substance | Originally made of: | Now it is: |
| :---: | :---: | :---: |
| aspirin | bark of a willow tree | synthesized |
| pool balls | elephant tusk | synthesized |

There are currently over 50 million man made compounds in the world. Aspirin, nylon and polyester in clothes, graphite tennis rackets, tires, plastics and thousands of other products you use are all synthetic.
The number of synthetic compounds has increased exponentially over the last century due to the increase in our knowledge of chemistry.

| Substance | Originally made of: | Now it is: |
| :---: | :---: | :---: |
| aspirin | bark of a willow tree | synhesized |
| pool balls | elephant tusk | synthesized |
| guitar strings | animal intestines | synthesized |

There are currently over 50 million man made compounds in the world. Aspirin, nylon and polyester in clothes, graphite tennis rackets, tires, plastics and thousands of other products you use are all synthetic.
The number of synthetic compounds has increased exponentially over the last century due to the increase in our knowledge of chemistry.

| Substance | Originally made of: | Now it is: |
| :---: | :---: | :---: |
| aspirin | bark of a willow tree | synthesized |
| pool balls | elephant tusk | synthesized |
| guitar strings | animal intestines | synthesized |
| tires | rubber from tree | synthesized |

There are currently over 50 million man made compounds in the world. Aspirin, nylon and polyester in clothes, graphite tennis rackets, tires, plastics and thousands of other products you use are all synthetic.
The number of synthetic compounds has increased exponentially over the last century due to the increase in our knowledge of chemistry.

| Substance | Originally made of: | Now it is: |
| :---: | :---: | :---: |
| aspirin | bark of a willow tree | synthesized |
| pool balls | elephant tusk | synthesized |
| guitar strings | animal intestines | synthesized |
| tires | rubber from tree | synthesized |
| tooth brushes | hog hairs | synthesized |

There are currently over 50 million man made compounds in the world. Aspirin, nylon and polyester in clothes, graphite tennis rackets, tires, plastics and thousands of other products you use are all synthetic.
The number of synthetic compounds has increased exponentially over the last century due to the increase in our knowledge of chemistry.

| Substance | Originally made of: | Now it is: |
| :---: | :---: | :---: |
| aspirin | bark of a willow tree | synthesized |
| pool balls | elephant tusk | synthesized |
| guitar strings | animal intestines | synthesized |
| tires | rubber from tree | synthesized |
| tooth brushes | hog hairs | synthesized |
| combs | ivory, turtle shell | synthesized |

There are currently over 50 million man made compounds in the world. Aspirin, nylon and polyester in clothes, graphite tennis rackets, tires, plastics and thousands of other products you use are all synthetic.
The number of synthetic compounds has increased exponentially over the last century due to the increase in our knowledge of chemistry.

| Substance | Originally made of: | Now it is: |
| :---: | :---: | :---: |
| aspirin | bark of a willow tree | synthesized |
| pool balls | elephant tusk | synthesized |
| guitar strings | animal intestines | synthesized |
| tires | rubber from tree | synthesized |
| tooth brushes | hog hairs | synthesized |
| combs | ivory, turtle shell | synthesized |
| piano keys | ivory | synthesized |



## So how do Chemist make compounds?



## So how do Chemist make compounds?



Well... let's start out easy and work our way up!

Aluminum Suffide

## Aluminum Suffide

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry. A solid, it is produced by igniting aluminum and sulfur.

## Aluminum Suffide

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in indusiry. A solid, it is produced by igniting aluminum and sulfur.

## Aluminum Suffide

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry. A solid, it is produced by igniting aluminum and sulfur.

## Aluminum Sulficte

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry. A solid, it is produced by igniting aluminum and sulfur.
Its is used in antiperspirants, water purification, soil preparation,cloth printing as well as hundreds of other applications.

## Aluminum Sulfiche

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in indusiry. A solid, it is produced by igniting aluminum and sulfur.
lis is used in antiperspirants, water purification, soil preparation,cloth printing as well as hundreds of other applications.


## Aluminum Sulficte

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry. A solid, it is produced by igniting aluminum and sulfur.
Its is used in antiperspirants, water purification, soil preparation,cloth printing as well as hundreds of other applications.

## Aluminum Sulficte

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry. A solid, it is produced by igniting aluminum and sulfur.
Its is used in antiperspirants, water purification, soil preparation,cloth printing as well as hundreds of other applications.

The equation for this reaction would be:

## Aluminum Sulfide

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry. A solid, it is produced by igniting aluminum and sulfur.
lis is used in antiperspirants, water purification, soil preparation,cloth printing as well as hundreds of other applications.

The equation for this reaction would be:

2AI

35
$\mathrm{Al}_{2} \mathrm{~S}_{3}$

## Aluminum Sulfide

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry. A solid, it is produced by igniting aluminum and sulfur.
Its is used in antiperspirants, water purification, soil preparation, cloth printing as well as hundreds of other applications.

The equation for this reaction would be:
 read this as:

## Aluminum Sulfide

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry.
A solid, it is produced by igniting aluminum and sulfur.
Its is used in antiperspirants, water purification, soil preparation, cloth printing as well as hundreds of other applications.

The equation for this reaction would be:
$\underset{\substack{\text { We } \\ \text { could } \\ \text { read }}}{\text { red }}+2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$
2 Al atoms +3 S atoms $\rightarrow 1 \mathrm{Al}_{2} \mathrm{~S}_{3}$ unit cell

## Aluminum Sulfide

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry.
A solid, it is produced by igniting aluminum and sulfur.
Its is used in antiperspirants, water purification, soil preparation,cloth printing as well as hundreds of other applications.

The equation for this reaction would be:
$\underset{\substack{\text { We } \\ \text { could }}}{ } 2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$
read 2 Al atoms $+3 S_{\text {atoms }}^{\rightarrow} 1 \mathrm{Al}_{2} S_{3}$ unit cell
this as:
2 doz. Al atoms +3 doz.S atoms $\rightarrow 1$ doz. $\mathrm{Al}_{2} S_{3}$ unit cells

## Aluminum Sulfide

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry.
A solid, it is produced by igniting aluminum and sulfur.
Its is used in antiperspirants, water purification, soil preparation, cloth printing as well as hundreds of other applications.

The equation for this reaction would be:
$\underset{\text { Nos }}{\text { vid }} 2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$
read 2 Al atoms +35 atoms $\rightarrow 1 \mathrm{Al}_{2} \mathrm{~S}_{3}$ unit cell
this as:
2 doz. Al atoms +3 doz.S atoms $\rightarrow 1$ doz. Al $S_{2}$ unit cells 2 moles $\mathrm{Al}+3$ moles $S \rightarrow 1$ mole Al $\mathrm{S}_{3}$

## Aluminum Sulfide

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry.
A solid, it is produced by igniting aluminum and sulfur.
Its is used in antiperspirants, water purification, soil preparation, cloth printing as well as hundreds of other applications.

The equation for this reaction would be:
$\pm 2 \mathrm{Al}+3 \mathrm{SH} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$
read 2 Al atoms +35 atoms $\rightarrow 1 \mathrm{Al}_{2} \mathrm{~S}_{3}$ unit cell this as:

2 doz. Al atoms +3 doz.S atoms $\rightarrow 1$ doz. Al $S_{2}$ unit cells
We could 2 moles $\mathrm{Al}+3$ moles $S \rightarrow 1$ mole Al $\mathrm{S}_{3}$ NOT read
this os:

## Aluminum Sulficte

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry.
A solid, it is produced by igniting aluminum and sulfur.
Its is used in antiperspirants, water purification, soil preparation, cloth printing as well as hundreds of other applications.

The equation for this reaction would be:
$\pm 2 \mathrm{Al}+3 \mathrm{SH} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$
read 2 Al atoms +3 S atoms $\rightarrow 1 \mathrm{Al}_{2} \mathrm{~S}_{3}$ unit cell
this as:
2 doz. Al atoms +3 doz.S atoms $\rightarrow 1$ doz. Al2 $S_{3}$ unit cells
We could 2 moles Al +3 moles $S \rightarrow 1$ mole Al $\mathrm{S}_{3}$
NOT read this as:

2 grams $\mathrm{Al}+3$ grams $S \rightarrow 1$ gram Al2 $S_{3}$

## Aluminum Sulfide

Aluminum sulfide $\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)$ is widely used in industry.
A solid, it is produced by igniting aluminum and sulfur.
Its is used in antiperspirants, water purification, soil preparation, cloth printing as well as hundreds of other applications.

The equation for this reaction would be:

read 2 Al atoms +35 atoms $\rightarrow 1 \mathrm{Al}_{2} \mathrm{~S}_{3}$ unit cell
this as:
2 doz. Al atoms +3 doz.S atoms $\rightarrow 1$ doz. Al $S_{2}$ unit cells
We could 2 moles $\mathrm{Al}+3$ moles $S \rightarrow 1$ mole Al $\mathrm{S}_{3}$ NOT read this as:

$2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$

## $2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$

For you to produce 1 mole of $\mathrm{Al}_{2} \delta_{3}$, you must know how many grams of aluminum and how many grams of sulfur to react. Use D.A. to calculate how many grams of each reactant is needed.

## 2 moles of

 aluminum
## 2 Al <br> $\mathrm{Al}_{2} \mathrm{~S}_{3}$

For you to produce 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$, you must know how many grams of aluminum and how many grams of sulfur to react. Use D.A. to calculate how many grams of each reactant is needed.


For you to produce 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$, you must know how many grams of aluminum and how many grams of sulfur to react. Use D.A. to calculate how many grams of each reactant is needed.


For you to produce 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$, you must know how many grams of aluminum and how many grams of sulfur to react. Use D.A. to calculate how many grams of each reactant is needed.


For you to produce 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$, you must know how many grams of aluminum and how many grams of sulfur to react. Use D.A. to calculate how many grams of each reactant is needed.

$$
\frac{2 \text { mot Al }}{1} \left\lvert\, \frac{26.98 \mathrm{~g}}{1 \text { not }}=53.96 \mathrm{~g} \mathrm{Al}\right.
$$



For you to produce 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$, you must know how many grams of aluminum and how many grams of sulfur to react. Use D.A. to calculate how many grams of each reactant is needed.

$$
\left.\frac{2 \text { mot Al }}{\frac{26.98 \mathrm{~g}}{1}} \frac{1 \text { not }}{}=53.96 \mathrm{~g} \mathrm{Al} \quad \frac{3 \text { mol }}{1} \right\rvert\, \frac{32.06 \mathrm{~g}}{1 \mathrm{nol}}=96.18 \mathrm{~g}
$$



For you to produce 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$, you must know how many grams of aluminum and how many grams of sulfur to react. Use D.A. to calculate how many grams of each reactant is needed.

$$
\left.\frac{2 \text { mot Al }}{\frac{26.98 \mathrm{~g}}{1}} \frac{1 \text { not }}{2}=53.96 \mathrm{~g} \mathrm{Al} \quad \frac{3 \operatorname{mol} /}{1} \right\rvert\, \frac{32.06 \mathrm{~g}}{1 \text { not }}=96.18 \mathrm{~g}
$$

53.96 g of $\mathrm{Al}+96.18 \mathrm{~g}$ of S would produce 150.14 g of $\mathrm{Al}_{2} \mathrm{~S}_{3}$


For you to produce 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$, you must know how many grams of aluminum and how many grams of sulfur to react. Use D.A. to calculate how many grams of each reactant is needed.

$$
\left.\begin{array}{c|c|c}
2 \text { mat Al } & 26.98 \mathrm{~g} \\
\hline 1 & 1 \text { mot }
\end{array}=53.96 \mathrm{~g} \mathrm{Al} \quad \frac{3 \text { mol } S}{} \right\rvert\, \frac{32.06 \mathrm{~g}}{1 \mathrm{nol}}=96.18 \mathrm{~g}
$$

53.96 g of Al +96.18 g of S would produce 150.14 g of $\mathrm{Al}_{2} \mathrm{~S}_{3}$ In the real world industry needs to make millions of kg of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.

To do so they use Mole Ratio Conversion factors.

## Mole Ratio Conversion Factors

$$
2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}
$$

## Mole Ratio Conversion Factors

## $2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$ <br> 2 moles of Al <br> 3 moles of 5 <br> 1 mole of Al2S3

## Mole Ratio Conversion Factors

2Al2 moles of Al

# $\mathrm{Al}_{2} \mathrm{~S}_{3}$ 

3 moles of $S$

## 3S $\rightarrow$

1 mole of Al2 $S_{3}$

In this reaction we know that 2 moles of Al requires 3 moles of $S$ to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.
From this reaction we can make 6 mole ratio conversion factors:

## Mole Ratio Conversion Factors

2Al$\mathrm{Al}_{2} \mathrm{~S}_{3}$

## 2 moles of Al

3 moles of $S$

## + $3 S \rightarrow$

1 mole of Al2 $S_{3}$

In this reaction we know that 2 moles of Al requires 3 moles of $S$ to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.
From this reaction we can make 6 mole ratio conversion factors:


## Mole Ratio Conversion Factors

2Al2 moles of Al

## $+3 S \rightarrow$ <br> $\mathrm{Al}_{2} \mathrm{~S}_{3}$

3 moles of $S$ 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$
In this reaction we know that 2 moles of Al requires 3 moles of $S$ to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.
From this reaction we can make 6 mole ratio conversion factors:
relationship between
Al and S:


## Mole Ratio Conversion Factors

2 Al2 moles of Al

## + 3S $\rightarrow$ <br> $\mathrm{Al}_{2} \mathrm{~S}_{3}$

3 moles of s

1 mole of Al253

In this reaction we know that 2 moles of Al requires 3 moles of $S$ to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.
From this reaction we can make 6 mole ratio conversion factors:
relationship between
Al and S:
2 mol Al
3 mol S

## Mole Ratio Conversion Factors

## $2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$ <br> 2 moles of Al <br> 3 moles of s <br> 1 mole of Al2 $5_{3}$

In this reaction we know that 2 moles of Al requires 3 moles of S to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.
From this reaction we can make 6 mole ratio conversion factors:
relationship between
Al and S:
2 mol Al 3 mols
3 mol S 2 mol Al

## Mole Ratio Conversion Factors

## $2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$ 2 moles of Al <br> 3 moles of s 1 mole of Al253

 In this reaction we know that 2 moles of Al requires 3 moles of S to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.From this reaction we can make 6 mole ratio conversion factors:
relationship between
Al and S:
2 mol Al 3 mols
3 mol S 2 mol Al
relationship between Al and $\mathrm{Al}_{2} \mathrm{~S}_{3}$ :

## Mole Ratio Conversion Factors

2 Al

## 2 moles of Al

## + 3S $\rightarrow$ $\mathrm{A}_{2} \mathrm{~S}_{3}$

 3 moles of 5 1 mole of Al2S3 In this reaction we know that 2 moles of Al requires 3 moles of S to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.From this reaction we can make 6 mole ratio conversion factors:
relationship between
Al and S:
$\frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{mols}} \quad \frac{3 \mathrm{mols}}{2 \mathrm{~mol} \mathrm{Al}}$
relationship between
Al and $\mathrm{Al}_{2} \mathrm{~S}_{3}$ :
2 mol Al
$1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}$

## Mole Ratio Conversion Factors

2 Al

## 2 moles of Al

## + 3S $\rightarrow$ $\mathrm{A}_{2} \mathrm{~S}_{3}$

 3 moles of 5 I mole of Al253 In this reaction we know that 2 moles of Al requires 3 moles of S to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.From this reaction we can make 6 mole ratio conversion factors:
relationship between Al and S:
2 molal 3 mols
$3 \mathrm{mols} 2 \mathrm{~mol} A \mathrm{Al}$
relationship between
Al and $\mathrm{Al}_{2} \mathrm{~S}_{3}$ :
$\underline{2 \mathrm{~mol} \mathrm{Al}^{2}} \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}} \frac{\mathrm{~mol} \mathrm{Al}}{}$

## Mole Ratio Conversion Factors

## $2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$ <br> 2 moles of AJ <br> 3 moles of $S$ <br> I mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$

In this reaction we know that 2 moles of Al requires 3 moles of $S$ to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.
From this reaction we can make 6 mole ratio conversion factors:
relationship between Al and S: 2 mol Al 3 mols 3 mols 2 mol Al
relationship between
Al and $\mathrm{Al}_{2} \mathrm{~S}_{3}$ :
$\frac{2 \mathrm{~mol} \mathrm{Al}^{2}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}} \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}{2 \mathrm{~mol} \mathrm{Al}}$
relationship between S and $\mathrm{Al}_{2} \mathrm{~S}_{3}$ :

## Mole Ratio Conversion Factors

## $2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$ <br> 2 moles of AJ <br> 3 moles of $S$ I mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$

In this reaction we know that 2 moles of Al requires 3 moles of $S$ to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.
From this reaction we can make 6 mole ratio conversion factors:
relationship between Al and S: $\frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{mols}} \frac{3 \mathrm{mols}}{2 \mathrm{~mol} \mathrm{Al}}$
relationship between
Al and $\mathrm{Al}_{2} \mathrm{~S}_{3}$ :
$\frac{2 \mathrm{~mol} \mathrm{Al}^{2}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}} \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}{2 \mathrm{~mol} \mathrm{Al}}$
relationship between S and $\mathrm{Al}_{2} \mathrm{~S}_{3}$ :
3 mols
$\mathrm{mol} \mathrm{Al}_{2} \mathrm{~S}_{3}$

## Mole Ratio Conversion Factors

## $2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$ <br> 2 moles of Al <br> 3 moles of 5 <br> 1 mole of $\mathrm{Al}_{2} S_{3}$

In this reaction we know that 2 moles of Al requires 3 moles of $S$ to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.
From this reaction we can make 6 mole ratio conversion factors:
relationship between Al and S:
2 mol Al 3 mols
3 mol S 2 mol Al
relationship between
Al and $\mathrm{Al}_{2} \mathrm{~S}_{3}$ :
$\frac{2 \mathrm{~mol} \mathrm{Al}^{2 l}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}} \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}{2 \mathrm{~mol} \mathrm{Al}}$
relationship between S and $\mathrm{Al}_{2} \mathrm{~S}_{3}$ :
$\frac{3 \mathrm{~mol} \mathrm{~s}}{\mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}} \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}{3 \mathrm{~mol}}$

## Mole Ratio Conversion Factors

## $2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{~A}_{2} \mathrm{~S}_{3}$ <br> 2 moles of Al <br> 3 moles of 5 <br> 1 mole of Al2 $_{3} 3$

In this reaction we know that 2 moles of Al requires 3 moles of S to make 1 mole of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.
From this reaction we can make 6 mole ratio conversion factors:
relationship between Al and S:
2 mol Al 3 mols
3 mol S 2 mol Al
relationship between
Al and $\mathrm{Al}_{2} \mathrm{~S}_{3}$ :
$\frac{2 \mathrm{~mol} \mathrm{Al}^{2}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}} \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}{2 \mathrm{~mol} \mathrm{Al}}$
relationship between S and $\mathrm{Al}_{2} \mathrm{~S}_{3}$ :
$\frac{3 \mathrm{~mol} \mathrm{~s}}{\mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}} \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}{3 \mathrm{~mol}}$ We will now use these Mole Ratio Conversion factors to do Stoichiometry!

Problem 1: If you have 245.67 g of oluminum, how much aluminum sulfide could you make with an excess of sulfur?

Problem 1: If you have 245.67 g of aluminum, how much duminum sulfide could you make wih an excess of sulfur? $2 A l+3 S \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$

Problem 1: If you have 245.67 g of aluminum, how much domminum sui fine could you moke with on excess of sulfur

$$
2 \text { mblespf Al }+3 \text { moles of } s
$$

Problem 1: If you have 245.67 g of aluminum, how much dummum sufide could you moke with an excess of suffurt

2 moleshi Al +3 moleg ofs $\Rightarrow 1$ molerofishss
Step 1: Set up the D.A. to convert grams of Al to moles of Al.

Proilem 1: If you have 245.67 g of aluminum, how much aluminum suffide could you make with an excess of suffur?

Step 1: Set up the D.A. to convert grams of Al to moles of Al.

$$
\frac{245.67 \mathrm{~g} \mid 1 \mathrm{~mol} \mathrm{Al}}{126.98 \mathrm{~g}}
$$

Step 1: Set up the D.A. to convert grams of Al to moles of Al.
Step 2: Write a Mole Ratio Conversion Factor to convert moles of Aluminum to moles of Aluminum sulfide.

$$
\frac{245.67 \mathrm{~g} \mid 1 \mathrm{~mol} \mathrm{Al}}{126.98 \mathrm{~g}}
$$

Step 1: Set up the D.A. to convert grams of Al to moles of Al. Step 2: Write a Mole Ratio Conversion Factor to convert moles of Aluminum to moles of Aluminum sulfide.

Step 1: Set up the D.A. to convert grams of Al to moles of Al.
Step 2: Write a Mole Ratio Conversion Factor to convert moles of Aluminum to moles of Aluminum sulfide.
Step 3: Write a conversion factor that will convert moles of aluminum sulfide to grams of aluminum sulfide.
$\frac{245.67 \mathrm{~g} \mid \mathrm{mol} \mathrm{Al}_{1}}{1} 1 \mathrm{l} \mathrm{mol} \mathrm{Al} \mathrm{S}_{3}$

Step 1: Set up the D.A. to convert grams of Al to moles of Al.
Step 2: Write a Mole Ratio Conversion Factor to convert moles of Aluminum to moles of Aluminum sulfide.
Step 3: Write a conversion factor that will convert moles of aluminum sulfide to grams of aluminum sulfide.

$$
\begin{array}{c|c|c|c}
245.67 \mathrm{~g} \mid \mathrm{mol} \mathrm{Al} & 1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3} & 150.16 \mathrm{~g} \mathrm{Al}_{2} \mathrm{~S}_{3} \\
\hline 1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}
\end{array}
$$

## 2 molespif +3 moleg of $s \rightarrow 1$ molegofiniss

Step 1: Set up the D.A. to convert grams of Al to moles of Al.
Step 2: Write a Mole Ratio Conversion Factor to convert moles of Aluminum to moles of Aluminum sulfide.
Step 3: Write a conversion factor that will convert moles of aluminum sulfide to grams of aluminum sulfide.
Step 4: Solve for grams of aluminum sulfide produced in the reaction.


## 2 molespif +3 moleg of $s \rightarrow 1$ molegofiniss

Step 1: Set up the D.A. to convert grams of Al to moles of Al.
Step 2: Write a Mole Ratio Conversion Factor to convert moles of Aluminum to moles of Aluminum sulfide.
Step 3: Write a conversion factor that will convert moles of aluminum sulfide to grams of aluminum sulfide.
Step 4: Solve for grams of aluminum sulfide produced in the reaction.

## 2 moles of $\mathrm{Al}+3$ moleg ois $\rightarrow 1$ molerofizs $\mathrm{S}_{3}$

Step 1: Set up the D.A. to convert grams of Al to moles of Al.
Step 2: Write a Mole Ratio Conversion Factor to convert moles of Aluminum to moles of Aluminum sulfide.
Step 3: Write a conversion factor that will convert moles of aluminum sulfide to grams of aluminum sulfide.
Step 4: Solve for grams of aluminum sulfide produced in the reaction.

Step 1: Set up the D.A. to convert grams of Al to moles of Al.
Step 2: Write a Mole Ratio Conversion Factor to convert moles of Aluminum to moles of Aluminum sulfide.
Step 3: Write a conversion factor that will convert moles of aluminum sulfide to grams of aluminum sulfide.
Step 4: Solve for grams of aluminum sulfide produced in the reaction.


Problem 2: How much sulfur would be required in this reaction?

## 2 moles of $\mathrm{Al}+3$ moleg of $s \rightarrow 1$ molerofishs 3

Step 1: Set up the D.A. to convert grams of Al to moles of Al.
Step 2: Write a Mole Ratio Conversion Factor to convert moles of Aluminum to moles of Aluminum sulfide.
Step 3: Write a conversion factor that will convert moles of aluminum sulfide to grams of aluminum sulfide.
Step 4: Solve for grams of aluminum sulfide produced in the reaction.


Problem 2: How much sulfur would be required in this reaction?

$$
246 \mathrm{~g} \mathrm{Al}+? \mathrm{~g} \text { of } \mathrm{S} \rightarrow 683.7 \mathrm{~g} \mathrm{Al} S_{3}
$$

## 2 modespi $\mathrm{Al}+3$ moleg of $\rightarrow 1$ molerofiss $\rightarrow$

Step 1: Set up the D.A. to convert grams of Al to moles of Al.
Step 2: Write a Mole Ratio Conversion Factor to convert moles of Aluminum to moles of Aluminum sulfide.
Step 3: Write a conversion factor that will convert moles of aluminum sulfide to grams of aluminum sulfide.
Step 4: Solve for grams of aluminum sulfide produced in the reaction.


Problem 2: How much sulfur would be required in this reaction?

$$
\begin{gathered}
246 \mathrm{~g} \mathrm{Al}^{+} ? \mathrm{~g} \text { of } \mathrm{S} \rightarrow 683.7 \mathrm{~g} \mathrm{Al}_{2} \mathrm{~S}_{3} \\
683.7 \mathrm{~g} \mathrm{Al}_{2} \mathrm{~S}_{3}-246.67 \mathrm{~g} \mathrm{Al}=438.0 \mathrm{~g} \text { of } \mathrm{S}
\end{gathered}
$$

## Problem 2: You want to make 350.0 g of harium phosphide. How many grams of each of your reaciants do you need?

Step 1: Write a balanced equation for the reaction.

## Problem 2: You want to make 350.0 g of barium phosphide.

 How many grams of each of your readants do you need? $3 \mathrm{Ba}_{\mathrm{a}}+2 \mathrm{P} \rightarrow \mathrm{Bu}_{3} \mathrm{P}_{2}$Step 1: Write a balanced equation for the reaction.

Step 1: Write a balanced equation for the reaction. Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles.

## $3 \mathrm{Ba}_{\mathrm{a}}+2 \mathrm{P} \rightarrow \mathrm{BO}_{3} \mathrm{P}_{2}$

## $\frac{350.0 \mathrm{~g} \mathrm{Ba}_{3} \mathrm{P}_{2}}{\mathrm{l}} 11 \mathrm{~mole} \mathrm{Ba} 3 \mathrm{P}_{2}$

Step 1: Write a balanced equation for the reaction. Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles.

Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles. Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium.

# $3 \mathrm{Ba}_{1}+2 \mathrm{P} \rightarrow \mathrm{BO}_{3} \mathrm{P}_{2}$ 

## $\left.\frac{350.0 \mathrm{~g} \mathrm{Ba}_{3} \mathrm{P}_{2}}{\mathrm{l}_{2}} \frac{1 \text { mole Ba3 } \mathrm{P}_{2}}{473.93 \mathrm{~g} \mathrm{Ba} \mathrm{P}_{2}} \right\rvert\, \frac{3 \text { moles } \mathrm{Ba}}{1 \text { mole Ba } \mathrm{P}_{2}}$

Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles. Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium.

# $3 \mathrm{Ba}_{1}+2 \mathrm{P} \rightarrow \mathrm{Bol}_{3} \mathrm{P}_{2}$ 

## $\left.\frac{350.0 \mathrm{~g} \mathrm{Ba}_{3} \mathrm{P}_{2}}{\mathrm{l}_{2}} \frac{1 \text { mole Ba3 } \mathrm{P}_{2}}{473.93 \mathrm{~g} \mathrm{Ba} \mathrm{P}_{2}} \right\rvert\, \frac{3 \text { moles } \mathrm{Ba}}{1 \text { mole Ba } \mathrm{P}_{2}}$

Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles. Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium. Step 4: Convert moles of barium to grams of barium.

# $3 B \mathrm{Ba}+2 \mathrm{P} \rightarrow \mathrm{BO}_{3} \mathrm{P}_{2}$ 



Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles. Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium. Step 4: Convert moles of barium to grams of barium.

# $3 \mathrm{Ba}_{1}+2 \mathrm{P} \rightarrow \mathrm{Bu}_{3} \mathrm{P}_{2}$ 

## 

Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles. Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium. Step 4: Convert moles of barium to grams of barium.
Step 5: Solve for grams of barium needed to make 350 g of $\mathrm{Ba}_{3} \mathrm{P}_{2}$.

# $3 \mathrm{Ba}+2 \mathrm{P} \rightarrow \mathrm{Bu}_{3} \mathrm{P}_{2}$ 



Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles. Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium. Step 4: Convert moles of barium to grams of barium.
Step 5: Solve for grams of barium needed to make 350 g of $\mathrm{Ba}_{3} \mathrm{P} 2$.

# $3 \mathrm{Ba}+2 \mathrm{P} \rightarrow \mathrm{Bu}_{3} \mathrm{P}_{2}$ 



Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles. Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium. Step 4: Convert moles of barium to grams of barium.
Step 5: Solve for grams of barium needed to make 350 g of $\mathrm{Ba}_{3} \mathrm{P}_{2}$.

# $3 \mathrm{BO}+2 \mathrm{P} \rightarrow \mathrm{BO}_{3} \mathrm{P}_{2}$ 



Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles. Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium. Step 4: Convert moles of barium to grams of barium.
Step 5: Solve for grams of barium needed to make 350 g of $\mathrm{Ba}_{3} \mathrm{P}_{2}$. Step 6: Repeat the same steps listed above to solve for grams of phosphorus.

# $3 \mathrm{Ba}_{\mathrm{a}}+2 \mathrm{P} \rightarrow \mathrm{Bu}_{3} \mathrm{P}_{2}$ 

## 

Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles.
Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium.
Step 4: Convert moles of barium to grams of barium.
Step 5: Solve for grams of barium needed to make 350 g of $\mathrm{Ba}_{3} \mathrm{P}_{2}$.
Step 6: Repeat the same steps listed above to solve for grams of phosphorus.
$\frac{350.0 \mathrm{~g} \mathrm{Ba}_{3} \mathrm{P}_{2}}{11 \text { mole Ba } \mathrm{P}_{2}} 447.93 \mathrm{~g} \mathrm{Ba} \mathrm{P}_{2}$

# $3 \mathrm{Ba}_{\mathrm{a}}+2 \mathrm{P} \rightarrow \mathrm{Bu}_{3} \mathrm{P}_{2}$ 

## 

Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles.
Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium.
Step 4: Convert moles of barium to grams of barium.
Step 5: Solve for grams of barium needed to make 350 g of $\mathrm{Ba}_{3} \mathrm{P}_{2}$. Step 6: Repeat the same steps listed above to solve for grams of phosphorus. $\left.\frac{350.0 \mathrm{~g} \mathrm{Ba}_{3} \mathrm{P}_{2}}{1} \frac{1 \text { mole Ba3 } \mathrm{P}_{2}}{473.93 \mathrm{~g} \mathrm{Ba} \mathrm{P}_{2}} \right\rvert\, \frac{2 \text { moles } \mathrm{P}}{1 \text { mole Ba3 } \mathrm{P}_{2}}$

# $3 \mathrm{Ba}+2 \mathrm{P} \rightarrow \mathrm{Ba}_{3} \mathrm{P}_{2}$ 

## 

Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles.
Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium. Step 4: Convert moles of barium to grams of barium.
Step 5: Solve for grams of barium needed to make 350 g of $\mathrm{Ba}_{3} \mathrm{P}_{2}$. Step 6: Repeat the same steps listed above to solve for grams of phosphorus.
$\frac{350.0 \mathrm{~g} \mathrm{Ba}_{3} \mathrm{P}_{2}}{1} \frac{1 \text { mole Ba3 } \mathrm{P}_{2}}{473.93 \mathrm{~g} \mathrm{Ba} \mathrm{P}_{2}}\left|\frac{2 \text { moles } \mathrm{P}}{1 \text { mole Ba3 } \mathrm{P}_{2} \mathrm{~S}}\right| \frac{30.97 \mathrm{~g} \mathrm{P}}{1 \text { mole } \mathrm{P}}$

# $3 \mathrm{Ba}+2 \mathrm{P} \rightarrow \mathrm{Ba}_{3} \mathrm{P}_{2}$ 

## 

Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles.
Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium.
Step 4: Convert moles of barium to grams of barium.
Step 5: Solve for grams of barium needed to make 350 g of $\mathrm{Ba}_{3} \mathrm{P}_{2}$.
Step 6: Repeat the same steps listed above to solve for grams of phosphorus.


# $3 \mathrm{BO}+2 \mathrm{P} \rightarrow \mathrm{Ba}_{3} \mathrm{P}_{2}$ 

## 

Step 1: Write a balanced equation for the reaction.
Step 2: Set up D.A. to convert your 350.0 g of Ba3P2 to moles.
Step 3: Use a Mole Ratio Conversion Factor to convert to moles of barium. Step 4: Convert moles of barium to grams of barium.
Step 5: Solve for grams of barium needed to make 350 g of $\mathrm{Ba}_{3} \mathrm{P}_{2}$. Step 6: Repeat the same steps listed above to solve for grams of phosphorus.

# $3 \mathrm{BO}+2 \mathrm{P} \rightarrow \mathrm{BO}_{3} \mathrm{P}_{2}$ 

## 

Step 1: Write a bal Step 2: Set up D.A.

## Law of Conservation of Mass moles.

Step 3: Use a Mole 350.0 g barium phosphide moles of barium.
Step 4: Convert mo -304.3 g barium 45.7 g phosphorus $g$ of $\mathrm{Ba}_{3} \mathrm{P}_{2}$. grams of phosphorus.


Percent Yield

## Percent Yiela

A comparison of the amount of product you theoretically would obtain compared to the actual amount you got.

## Percent Yiela

A comparison of the amount of product you theoretically would obtain compared to the actual amount you got.

# Percent Yield 

A comparison of the amount of product you theoretically would obtain compared to the actual amount you got.
In an ideal world you would expect to have 100\% your reactants combine to form $100 \%$ of the product. This is the expectied yield.

# Percent Yield 

A comparison of the amount of product you theoretically would obtain compared to the actual amount you got.
In an ideal world you would expect to have $100 \%$ your reactants combine to form $100 \%$ of the product. This is the expectied yield.
In the real world you will get less than the expected yield due to several factors: impurities, reactants not completely reacting, errors in massing the reactants, ... this is called actual yield.

## Percent Yield

A comparison of the amount of product you theoretically would obtain compared to the actual amount you got.
In an ideal world you would expect to have $100 \%$ your reactants combine to form $100 \%$ of the product. This is the expected yield.
In the real world you will get less than the expected yield due to several factors: impurities, reactants not completely reacting, errors in massing the reactants, ... this is called actual yield.
The percent yield is determined by dividing the expected yield by the actual yield ideal yield and multiplying times 100 to make it a percent. Formula: actual yield $\times 100=$ Percent Yield expected yield

Problem 3: Meihyl alcohol (CH3OH) is used as a fuel, production of plastics, paints and texiles. If can be produced by reating carbon monoxide (CO) and hydrogen gas $\left(\mathrm{H}_{2}\right)$. If 75.0 g of CO reactis to produce 68.4 g . of $\mathrm{CH}_{3} \mathrm{OH}$, what is the percent yield of $\mathrm{CH}_{3} \mathrm{OH}$ ?

Problem 3: Meihyl alcohol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is used as a fuel, production of plastics, paints and texiles. If can be produced by reacting carbon monoxide (CO) and hydrogen gas $\left(\mathrm{H}_{2}\right)$. If 75.0 g of CO reacis to produce 68.4 g . of $\mathrm{CH}_{3} \mathrm{OH}$, what is the percent yield of $\mathrm{CH}_{3} \mathrm{OH}$ ?
Step 1: Write a balanced equation for the reaction.

Problem 3: Meihyl alcohol ( $\mathrm{CH}_{3} \mathrm{OH}$ ) is used as a fuel, production of plastics, painis and textiles. It can be produced by reacting carbon monoxide (CO) and hydrogen gas $\left(\mathrm{H}_{2}\right)$. If 75.0 g of CO reacis to produce 68.4 g . of $\mathrm{CH}_{3} \mathrm{OH}$, what is the percent yield of $\mathrm{CH}_{3} \mathrm{OH}$ ?
Step 1: Write a balanced equation for the reaction. $\mathrm{CO}_{(0)}+2 \mathrm{H}_{2(0)} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$

Problem 3: Meihyl alcohol ( $\mathrm{CH}_{3} \mathrm{OH}$ ) is used as a fuel, production of plastics, paints and textiles. If can be produced by reacting carbon monoxide (CO) and hydrogen gas $\left(\mathrm{H}_{2}\right)$. If 75.0 g of CO reacts to produce 68.4 g . of $\mathrm{CH}_{3} \mathrm{OH}$, what is the percent yield of $\mathrm{CH}_{3} \mathrm{OH}$ ?
Step 1: Write a balanced equation for the reaction. $\mathrm{CO}_{(0)}+2 \mathrm{H}_{2(0)} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{\mathrm{H}}$
Step 2: Using a Mole Ratio Conversion Factor, calculate the expected yield of methyl alcohol using 75.0 g of carbon monoxide gas.

Problem 3: Meihyl alcohol ( $\mathrm{CH}_{3} \mathrm{OH}$ ) is used as a fuel, production of plastics, paints and textiles. If can be produced by reacting carbon monoxide (CO) and hydrogen gas $\left(\mathrm{H}_{2}\right)$. If 75.0 g of CO reacts to produce 68.4 g . of $\mathrm{CH}_{3} \mathrm{OH}$, what is the percent yield of $\mathrm{CH}_{3} \mathrm{OH}$ ?
Step 1: Write a balanced equation for the reaction. $\mathrm{CO}_{(0)}+2 \mathrm{H}_{2(0)} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$
Step 2: Using a Mole Ratio Conversion Factor, calculate the expected yield of methyl alcohol using 75.0 g of carbon monoxide gas.


Problem 3: Meihyl alcohol ( $\mathrm{CH}_{3} \mathrm{OH}$ ) is used as a fuel, production of plastics, paints and textiles. It can be produced by reacting carbon monoxide (CO) and hydrogen gas $\left(\mathrm{H}_{2}\right)$. If 75.0 g of CO reacts to produce 68.4 g . of $\mathrm{CH}_{3} \mathrm{OH}$, what is the percent yield of $\mathrm{CH}_{3} \mathrm{OH}$ ?
Step 1: Write a balanced equation for the reaction. $\mathrm{CO}_{(\mathrm{c})}+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}$
Step 2: Using a Mole Ratio Conversion Factor, calculate the expected yield of methyl alcohol using 75.0 g of carbon monoxide gas.


Problem 3: Meihyl alcohol ( $\mathrm{CH}_{3} \mathrm{OH}$ ) is used as a fuel, production of plastics, paints and textiles. It can be produced by reacting carbon monoxide (CO) and hydrogen gas $\left(\mathrm{H}_{2}\right)$. If 75.0 g of CO reacts to produce 68.4 g . of $\mathrm{CH}_{3} \mathrm{OH}$, what is the percent yield of $\mathrm{CH}_{3} \mathrm{OH}$ ?
Step 1: Write a balanced equation for the reaction. $\mathrm{CO}_{(\mathrm{c})}+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}$
Step 2: Using a Mole Ratio Conversion Factor, calculate the expected yield of methyl alcohol using 75.0 g of carbon monoxide gas.


Problem 3: Meihyl alcohol ( $\mathrm{CH}_{3} \mathrm{OH}$ ) is used as a fuel, production of plastics, paints and textiles. It can be produced by reacting carbon monoxide (CO) and hydrogen gas $\left(\mathrm{H}_{2}\right)$. If 75.0 g of CO reacts to produce 68.4 g . of $\mathrm{CH}_{3} \mathrm{OH}$, what is the percent yield of $\mathrm{CH}_{3} \mathrm{OH}$ ?
Step 1: Write a balanced equation for the reaction. $\mathrm{CO}_{(\mathrm{s})}+2 \mathrm{H}_{2}(\mathrm{~s}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}$
Step 2: Using a Mole Ratio Conversion Factor, calculate the expected yield of methyl alcohol using 75.0 g of carbon monoxide gas.

Step 3: Solve for percent yield (actual yield/expected yield x 100)

Problem 3: Meihyl alcohol ( $\mathrm{CH}_{3} \mathrm{OH}$ ) is used as a fuel, production of plastics, points and texiles. If can be produced by reacting carbon monoxide (CO) and hydrogen gas $\left(\mathrm{H}_{2}\right)$. If 75.0 g of CO reactis to produce 68.4 g . of $\mathrm{CH}_{3} \mathrm{OH}$, what is the percent yied of $\mathrm{CH}_{3} \mathrm{OH}$ ?
Step 1: Write a balanced equation for the reaction. $\mathrm{CO}_{(\mathrm{s})}+2 \mathrm{H}_{2}(\mathrm{~s}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}$
Step 2: Using a Mole Ratio Conversion Factor, calculate the expected yield of methyl alcohol using 75.0 g of carbon monoxide gas.

Step 3: Solve for percent yield (actual yield/expected yield x 100 )

$$
\frac{68.4 \mathrm{~g} \text { of } \mathrm{CH}_{3} \mathrm{OH}}{85.8 \mathrm{~g} \text { of } \mathrm{H}_{3} \mathrm{OH}}=0.797 \times 100=79.7 \% \text { yield }
$$

## Percent Purity

## Percent Purity

Percent Purity is a measure of how pure a product is that is produced experimentally.

## Percent Purity

Percent Purity is a measure of how pure a product is that is produced experimentally.

Percent Purity is calculated in a similar way to Percent Yield.

## Percent Purity

Percent Purity is a measure of how pure a product is that is produced experimentally.

Percent Purity is calculated in a similar way to Percent Yield.
The formula for precent purity:
Mass of pure product $\times 100$ Mass of impure product

## Percent Purity

Percent Purity is a measure of how pure a product is that is produced experimentally.

Percent Purity is calculated in a similar way to Percent Yield.
The formula for precent purity:
Mass of pure product $\times 100$ Mass of impure product

Percent purity is especially important in the drug and food industry where impurities in the product could cause illness or death.

## Percent Purity of Aspirin



## Percent Purity of Aspirin

Aspirin, acetylsalicylic acid $\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}\right)$, is one of mankind's oldest drugs.
Ancient Egyptians chewed on the bark or leaves of a willow tree
 extracting the aspirin that was contained there.

In 1897 Felix Hoffman, working in at the Bayer lab in Germany, synthesizes aspirin.
 Americans consume 50 million aspirin tablets per day.

## Percent Purity of Aspirin

Aspirin, acetylsalicylic acid ( $\left.\mathrm{CH}_{8} \mathrm{O} 4\right)$, is one of mankind's oldest drugs.
Ancient Egyptians chewed on the bark or leaves of a willow tree
 extracting the aspirin that was contained there.

In 1897 Felix Hoffman, working in at the Bayer lab in Germany, synthesizes aspirin.
 Americans consume 50 million aspirin tablets per day.
A student making aspirin produces 121.2 g of product but analysis shows that only $\mathbf{1 0 9 . 2}$ grams of it is aspirin. Calculate the percent purity.

## Percent Purity of Aspirin

Aspirin, acetylsalicylic acid $\left(\mathrm{CH}_{8} \mathrm{O}_{4}\right)$, is one of mankind's oldest drugs.
Ancient Egyptians chewed on the bark or leaves of a willow tree
 Americans consume 50 million aspirin tablets per day.
A student making aspirin produces 121.2 g of product but analysis shows that only 109.2 grams of it is aspirin. Calculate the percent purity.
Percent Purity $=$ mass of pure product $=\frac{109.2 \otimes}{}=0.9010 \times 100=$ mass of impure product $=121.2 \mathrm{y} \quad 90.10 \%$ pure

## Stoichometiry involving Gases

## Stoichometiry involving Gases

In 1811, the Italian scientist Amedeo Avogadro proposed that equal volumes of gases at a given temperature \& pressure have equal number of molecules.

## Stoichometiry involving Gases

In 1811, the Italian scientist Amedeo Avogadro proposed that equal volumes of gases at a given temperature \& pressure have equal number of molecules.

It was later calculated that $24 \mathrm{dm}^{3}$ (liters) of a gas at $20^{\circ} \mathrm{C}$ and 1 atmosphere pressure (RTP) contains one mole of molecules.

## Stoichometry involving Gases

In 1811, the Italian scientist Amedeo Avogadro proposed that equal volumes of gases at a given temperature \& pressure have equal number of molecules.

It was later calculated that $24 \mathrm{dm}^{3}$ (liters) of a gas at $20^{\circ} \mathrm{C}$ and 1 atmosphere pressure (RTP) contains one mole of molecules.

So... instead of trying to mass a mole of a gas (which would be especially difficult with lighter than air gases), scientists measure out a mole of gas by volume: 24 L @ room temperature \& pressure

## Stoichometiry involving Gases

In 1811, the Italian scientist Amedeo Avogadro proposed that equal volumes of gases at a given temperature \& pressure have equal number of molecules.

It was later calculated that $24 \mathrm{dm}^{3}$ (liters) of a gas at $20^{\circ} \mathrm{C}$ and 1 atmosphere pressure (RTP) contains one mole of molecules.

So... instead of trying to mass a mole of a gas (which would be especially difficult with lighter than air gases), scientists measure out a mole of gas by volume: 24 L @ room temperature \& pressure
When dealing with gases, 1 mole $=24 \mathrm{dm}^{3}$ at RTP.

## Stoichometiry involving Gases

## Stoichometiry involving Gases

When carbon is burned it produces the carbon dioxide gas. If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP?

## Stoichometiry involving Gases

When carbon is burned it produces the carbon dioxide gas. If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP? Step 1: Write an equation for the reaction.

## Stoichometry involving Gases

When carbon is burned it produces the carbon dioxide gas. If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP?

Step 1: Write an equation for the reaction.

## $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~s})$

## Stoichometry involving Gases

When carbon is burned it produces the carbon dioxide gas. If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP?

Step 1: Write an equation for the reaction.

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}
$$

Step 2: Use the Mole Ratio Conversion Factor and $24 \mathrm{dm}^{3}=1$ mole of $\mathrm{CO}_{2}$ gas to calculate how many $\mathrm{dm}^{3}$ of carbon dioxide are produced.

## Stoichometry involving Gases

When carbon is burned it produces the carbon dioxide gas. If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP?

Step 1: Write an equation for the reaction.

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2(\mathrm{~g})}
$$

Step 2: Use the Mole Ratio Conversion Factor and $24 \mathrm{dm}^{3}=1$ mole of $\mathrm{CO}_{2}$ gas to calculate how many $\mathrm{dm}^{3}$ of carbon dioxide are produced.


## Stoichometry involving Gases

When carbon is burned it produces the carbon dioxide gas. If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP?

Step 1: Write an equation for the reaction.

$$
\mathrm{C}_{(s)}+\mathrm{O}_{2(\mathrm{~s})} \rightarrow\left(\mathrm{CO}_{2(\mathrm{~s})}\right.
$$

Step 2: Use the Mole Ratio Conversion Factor and $24 \mathrm{dm}^{3}=1$ mole of $\mathrm{CO}_{2}$ gas to calculate how many $\mathrm{dm}^{3}$ of carbon dioxide are produced.

## Stoichometry involving Gases

When carbon is burned it produces the carbon dioxide gas. If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP?

Step 1: Write an equation for the reaction.

$$
C_{(s)}+O_{2}(s) \rightarrow C O_{2(s)}
$$

Step 2: Use the Mole Ratio Conversion Factor and $24 \mathrm{dm}^{3}=1$ mole of $\mathrm{CO}_{2}$ gas to calculate how many $\mathrm{dm}^{3}$ of carbon dioxide are produced.


## Stoichometry involving Gases

When carbon is burned it produces the carbon dioxide gas. If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP?

Step 1: Write an equation for the reaction.

$$
C_{(s)}+O_{2}(s) \rightarrow C O_{2(s)}
$$

Step 2: Use the Mole Ratio Conversion Factor and $24 \mathrm{dm}^{3}=1$ mole of $\mathrm{CO}_{2}$ gas to calculate how many $\mathrm{dm}^{3}$ of carbon dioxide are produced. $\frac{67.5 \mathrm{~g} \text { of } \mathrm{C} \mid 1 \text { mole of } \mathrm{C} \mid 1 \text { mole of } \mathrm{CO}_{2}}{1} \frac{12.011 \mathrm{~g} \text { of } \mathrm{C}}{1 \mathrm{~mole} \text { of } \mathrm{C}}$

## Stoichometry involving Gases

When carbon is burned it produces the carbon dioxide gas. If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP?

Step 1: Write an equation for the reaction.

$$
C_{(s)}+O_{2}(s) \rightarrow C O_{2(s)}
$$

Step 2: Use the Mole Ratio Conversion Factor and $24 \mathrm{dm}^{3}=1$ mole of $\mathrm{CO}_{2}$ gas to calculate how many $\mathrm{dm}^{3}$ of carbon dioxide are produced. 6.5 g of $\mathrm{C}_{1} 1$ mole of $\mathrm{C}_{12} 1$ mole of $\mathrm{CO}_{2}, 44.01 \mathrm{~g}$ of $\mathrm{CO}_{2}$

## Stoichometry involving Gases

When carbon is burned it produces the carbon dioxide gas.
If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP?

Step 1: Write an equation for the reaction.

$$
C_{(s)}+O_{2}(s) \rightarrow C O_{2(s)}
$$

Step 2: Use the Mole Ratio Conversion Factor and $24 \mathrm{dm}^{3}=1$ mole of $\mathrm{CO}_{2}$ gas to calculate how many $\mathrm{dm}^{3}$ of carbon dioxide are produced. 67.5 g of $\mathrm{C}_{1} 1$ mole of $\mathrm{C}, 1$ mole of $\mathrm{CO}_{2}, 44.01 \mathrm{~g}$ of $\mathrm{CO}_{2} 24 \mathrm{dm}^{3}$ of $\mathrm{CO}_{2}$ $1 \quad 12.011 \mathrm{~g}$ of C 1 mole of C 1 mole of $\mathrm{CO}_{2} 44.01 \mathrm{~g}$ of $\mathrm{CO}_{2}$

## Stoichometry involving Gases

When carbon is burned it produces the carbon dioxide gas.
If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP?

Step 1: Write an equation for the reaction.

$$
C_{(s)}+O_{2}(s) \rightarrow C O_{2(s)}
$$

Step 2: Use the Mole Ratio Conversion Factor and $24 \mathrm{dm}^{3}=1$ mole of $\mathrm{CO}_{2}$ gas to calculate how many $\mathrm{dm}^{3}$ of carbon dioxide are produced. $\left.\frac{67.5 \mathrm{y} \text { off } \mid \text { mole off } \mid 1 \text { mole of } \mathrm{CO}_{2}, 44.01 \mathrm{y} \mathrm{of} \mathrm{CO}_{2} 24 \mathrm{dm}^{3} \text { of } \mathrm{CO}_{2}}{1} \right\rvert\, 12.011 \mathrm{~g}$ off 1 mole off $\mid 1$ mote of $\mathrm{CO}_{2} \mid 44.01 \mathrm{~g}$ of $\mathrm{CO}_{2}$

## Stoichometry involving Gases

When carbon is burned it produces the carbon dioxide gas.
If 67.5 grams of carbon are burnt in excess oxygen, what volume of carbon dioxide is produced at RTP?

Step 1: Write an equation for the reaction.

$$
C_{(s)}+O_{2}(s) \rightarrow C O_{2(s)}
$$

Step 2: Use the Mole Ratio Conversion Factor and $24 \mathrm{dm}^{3}=1$ mole of $\mathrm{CO}_{2}$ gas to calculate how many $\mathrm{dm}^{3}$ of carbon dioxide are produced. $\frac{67.5 \mathrm{y} \mathrm{off} \mid 1 \text { mole off } \mid 1 \text { mole of } \mathrm{CO}_{2}, 44.01 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}}{24 \mathrm{dm}^{3} \text { of } \mathrm{CO}_{2}}$ $135 \mathrm{dm}^{3}$ of $\mathrm{CO}_{2}$ gas

## Limiting Reagent

Let's say you own a pencil factory. A pencil is made of a graphite rod encased in a wood shaft with a metal band holding an eraser. An equation for the production of a pencil would look like this:

## limifing Reagent

Let's say you own a pencil factory. A pencil is made of a graphite rod encased in a wood shaft with a metal band holding an eraser. An equation for the production of a pencil would look like this: IGraphite rod + 1 Wood shaft + 1 steel band +1 eraser $\rightarrow 1$ pencil.


Let's say you own a pencil factory. A pencil is made of a graphite rod encased in a wood shaft with a metal band holding an eraser. An equation for the production of a pencil would look like this: 1 Graphite rod +1 Wood shaft +1 steel band +1 eraser $\rightarrow 1$ pencil. Suppose your foreman comes in and says that there is a problem: termites got into the wood shafts and destroyed all but 2000 of them.
You have hundreds of thousands of graphite rods, steel bands and erasers - but you only have 2000 wood shafts.

How many pencils can you make?


Let's say you own a pencil factory. A pencil is made of a graphite rod encased in a wood shaft with a metal band holding an eraser. An equation for the production of a pencil would look like this: 1 Graphite rod +1 Wood shaft +1 steel band +1 eraser $\rightarrow 1$ pencil. Suppose your foreman comes in and says that there is a problem: termites got into the wood shafts and destroyed all but 2000 of them.
You have hundreds of thousands of graphite rods, steel bands and erasers - but you only have 2000 wood shafts.

How many pencils can you make?
Chemical reactions are the same. If you run out of one reagent (reactant) but have plenty of the other reagents, the whole reaction shuts down and you cannot produce more product.

## Limiting Reagent

## Limiting Reagent

In the laboratory, a reaction is rarely carried out with exactly the required amount of reactants. In most cases one or more of the reactants is present in excess; that is, there is more than needed.

This reactant is called the excess reagent (reactant).

## Limiting Reagent

In the laboratory, a reaction is rarely carried out with exactly the required amount of reactants. In most cases one or more of the reactants is present in excess; that is, there is more than needed.

This reactant is called the excess reagent (reactant).
The reactant(s) that run out and cause the reaction to stop is called the limiting reagent (reactant).

## Limiting Reagent

In the laboratory, a reaction is rarely carried out with exactly the required amount of reactants. In most cases one or more of the reactants is present in excess; that is, there is more than needed.

This reactant is called the excess reagent (reactant).
The reactant(s) that run out and cause the reaction to stop is called the limiting reagent (reactant).
To determine which of your reactants are the limiting reagent you will use your mole ratio conversion factor to determine how much of each reactant is required for the reaction.

## Limiting Reagent: Mg + P

Magnesium burns bright in phosphorus to produce magnesium phosphide. If 37.6 g of Mg is reacted with 37.6 g of P , which is the limiting reagent?

## Limiting Reagent: Mg + P

Magnesium burns bright in phosphorus to produce magnesium phosphide. If 37.6 g of Mg is reacted with 37.6 g of P , which is the limiting reagent? Step 1: Write a balanced equation for the reaction.

## Limiting Reagent: Mg + P

Magnesium burns bright in phosphorus to produce magnesium phosphide. If 37.6 g of Mg is reacted with 37.6 g of P , which is the limiting reagent?

Step 1: Write a balanced equation for the reaction.

$$
3 M g+2 P^{\prime} \rightarrow M g_{3} P_{2}
$$

## Limiting Reagent: Mg + P

Magnesium burns bright in phosphorus to produce magnesium phosphide. If 37.6 g of Mg is reacted with 37.6 g of P , which is the limiting reagent?

Step 1: Write a balanced equation for the reaction. $3 \mathrm{Mg}+2 \mathrm{P} \rightarrow \mathrm{Mg} \mathrm{SP}_{2}$
Step 2: Use a Mole Ratio conversion factor to see how many grams of Phosphorus are required when 37.6 grams of Magnesium are present.

## Limiting Reagent: Mg + P

Magnesium burns bright in phosphorus to produce magnesium phosphide. If 37.6 g of Mg is reacted with 37.6 g of P , which is the limiting reagent? Step 1: Write a balanced equation for the reaction.

# $3 \mathrm{Mg}+2 \mathrm{P} \rightarrow \mathrm{Mg}_{3} \mathrm{P}$ ? 

Step 2: Use a Mole Ratio conversion factor to see how many grams of Phosphorus are required when 37.6 grams of Magnesium are present.


## Limiting Reagent: Mg + P

Magnesium burns bright in phosphorus to produce magnesium phosphide. If 37.6 g of Mg is reacted with 37.6 g of P , which is the limiting reagent? Step 1: Write a balanced equation for the reaction. $3 \mathrm{Mg}+2 \mathrm{P} \rightarrow \mathrm{Mg}_{3} \mathrm{P}_{2}$
Step 2: Use a Mole Ratio conversion factor to see how many grams of Phosphorus are required when 37.6 grams of Magnesium are present.


# Limiting Reagent: Mg + P 

Magnesium burns bright in phosphorus to produce magnesium phosphide. If 37.6 g of Mg is reacted with 37.6 g of P , which is the limiting reagent? Step 1: Write a balanced equation for the reaction.

# 3 Mg 

Step 2: Use a Mole Ratio conversion factor to see how many grams of Phosphorus are required when 37.6 grams of Magnesium are present. $\frac{37.6 \mathrm{~g} \text { of } \mathrm{Mg} 1 \text { mole of } \mathrm{Mg}}{1} 24.31 \mathrm{~g}$ of Mg

# Limiting Reagent: Mg + P 

Magnesium burns bright in phosphorus to produce magnesium phosphide. If 37.6 g of Mg is reacted with 37.6 g of P , which is the limiting reagent? Step 1: Write a balanced equation for the reaction.

# $3 \mathrm{Mg}+2 \mathrm{P} \rightarrow \mathrm{Mg}_{3} \mathrm{P} 2$ 

Step 2: Use a Mole Ratio conversion factor to see how many grams of Phosphorus are required when 37.6 grams of Magnesium are present. $\frac{37.6 \mathrm{~g} \text { of } \mathrm{Mg}}{1} 1$ mole of $\mathrm{Mg} \mid 2$ moles of $\mathrm{P} \mid$

# Limiting Reagent: Mg + P 

Magnesium burns bright in phosphorus to produce magnesium phosphide. If 37.6 g of Mg is reacted with 37.6 g of P , which is the limiting reagent? Step 1: Write a balanced equation for the reaction.

# 3 Mg 

Step 2: Use a Mole Ratio conversion factor to see how many grams of Phosphorus are required when 37.6 grams of Magnesium are present.


# Limiting Reagent: Mg + P 

Magnesium burns bright in phosphorus to produce magnesium phosphide. If 37.6 g of Mg is reacted with 37.6 g of P , which is the limiting reagent?

Step 1: Write a balanced equation for the reaction.

## 3 Mg <br> $\mathrm{Mg}_{3} \mathrm{P}_{2}$

Step 2: Use a Mole Ratio conversion factor to see how many grams of Phosphorus are required when 37.6 grams of Magnesium are present. | 37.6 g of Mg | 1 mole of Mg | 2 moles of $P$ | 30.97 g of P |
| :--- | :--- | :--- | :--- |
| 1 | 24.31 g of Mg | 3 moles of Mg | 1 mole of P |$=31.9 \mathrm{~g}$ of P

## Limiting Reagent: Mg + P

Magnesium burns bright in phosphorus to produce magnesium phosphide. If 37.6 g of Mg is reacted with 37.6 g of P , which is the limiting reagent? Step 1: Write a balanced equation for the reaction.

$$
3 M g+2 P \rightarrow M g P_{2}
$$

Step 2: Use a Mole Ratio conversion factor to see how many grams of Phosphorus are required when 37.6 grams of Magnesium are present.
 Since it requires only 31.9 g of phosphorus and you have 37.9 g , you will have an excess of 6.0 grams of $P$ when you run out of magnesium.

So magnesium is the limiting reagent.

## Liquid carbon disulfide is extremely flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas.

Liquid carbon disulfide is extremely flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas.


## Liquid carbon disulfide is extremely flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas.

## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas.If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?

## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas.If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?
Step 1: Write a balanced equation for the reaction.

## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas.If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?
Step 1: Write a balanced equation for the reaction.

$$
\left.\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2(\mathrm{~g}}\right)
$$

## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas.If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?
Step 1: Write a balanced equation for the reaction.

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

Step 2: Use a Mole Ratio conversion factor to see how many $\mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are needed when there is 152.28 g of $\mathrm{CS}_{2}$ present.

## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas. If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?Step 1 : Write a balanced equation for the reaction.

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

Step 2: Use a Mole Ratio conversion factor to see how many $\mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are needed when there is 152.28 g of $\mathrm{CS}_{2}$ present.


## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas. If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?Step 1 : Write a balanced equation for the reaction.

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2(\mathrm{~g})}
$$

Step 2: Use a Mole Ratio conversion factor to see how many $\mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are needed when there is 152.28 g of $\mathrm{CS}_{2}$ present.


## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas. If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?Step 1 : Write a balanced equation for the reaction.

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2(\mathrm{~g})}
$$

Step 2: Use a Mole Ratio conversion factor to see how many $\mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are needed when there is 152.28 g of $\mathrm{CS}_{2}$ present.


## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas. If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?Step 1: Write a balanced equation for the reaction.

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2(\mathrm{~g})}
$$

Step 2: Use a Mole Ratio conversion factor to see how many $\mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are needed when there is 152.28 g of $\mathrm{CS}_{2}$ present.


## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas. If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?Step 1: Write a balanced equation for the reaction.

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2(\mathrm{~g})}
$$

Step 2: Use a Mole Ratio conversion factor to see how many $\mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are needed when there is 152.28 g of $\mathrm{CS}_{2}$ present.


## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas. If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?Step 1: Write a balanced equation for the reaction.

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2(\mathrm{~g})}
$$

Step 2: Use a Mole Ratio conversion factor to see how many $\mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are needed when there is 152.28 g of $\mathrm{CS}_{2}$ present.


## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas. If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?Step 1: Write a balanced equation for the reaction.

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2(\mathrm{~g})}
$$

Step 2: Use a Mole Ratio conversion factor to see how many $\mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are needed when there is 152.28 g of $\mathrm{CS}_{2}$ present.


## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas. If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?Step 1: Write a balanced equation for the reaction.

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2(\mathrm{~g})}
$$

Step 2: Use a Mole Ratio conversion factor to see how many $\mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are needed when there is 152.28 g of $\mathrm{CS}_{2}$ present.

## Liquid carbon disulfide is extremely

 flammable and burns in oxygen to produce carbon dioxide gas and sulfur dioxide gas. If 152.28 g of carbon disulfide and $120 \mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are reacted, which is the limiting reagent?Step 1: Write a balanced equation for the reaction.

$$
\mathrm{CS}_{2}(0)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

Step 2: Use a Mole Ratio conversion factor to see how many $\mathrm{dm}^{3}$ of $\mathrm{O}_{2}$ are needed when there is 152.28 g of $\mathrm{CS}_{2}$ present.

Oxygen is the limited reagent since you need $144 \mathrm{dm}^{3}(6$ moles $)$ of $\mathrm{O}_{2}$ in this reaction but only have $120 \mathrm{dm}^{3}$ ( 5 moles).

## What you can now calculate with Stoichiometry!

## What you can now calculaite with Stoichiometry!

Masses of reactionts and products in a chiemical reaction.

## What you can now calculaite with Stoichiometry!

Masses of reactonts and products in a cheimical reaction.
Use a mole ratio conversion factor.

## What you can now calculaite with Stoichiometry!

Masses of reactonts and products in a cheiemical reaction.
Use a mole ratio conversion factor.
Calculating the Percent Yield of a product in a reaction.

## What you can now calculaite with Stoichiomeiry!

Masses of reactonts and products in a chiemical reaction.
Use a mole ratio conversion factor.
Calculafing the Percent Yield of a product in a reaction. Calculating the Percent Purity of a compound.

## What you can now calculaite with Stoichiometry!

Masses of reactonts and products in a chiemical reaction.
Use a mole ratio conversion factor.
Calculating the Percent Yield of a product in a reaction.
Calculating the Percent Purity of a compound.
Determine the Limiting Reagent in a reaction.

# What you can now calculaite with Stoichiometry! 

Masses of reactonts and products in a chiamical reaction.
Use a mole ratio conversion factor.
Calculafing the Percent Yield of a product in a reaction.
Calculating the Pertent Purity of a compound.
Determine the Limiting Reagent in a reaction.
Use 24dm³ @RTPfo converivolume to mass of gases.

