Motion

©2006 - Douglas Gilliland
Physical Science
Sarasota High School

Describe your motion as you sit in your chair.

Do you realize that you are moving and not moving lat the sametime?
Do you realize that there are 5 motions going on simultaneously?
As you sit still in your desk you are also moving as the Earth spins on it's axis. Just how fast are you moving?

Speed at Sarasota as the Earth rotates on it's axis.

Speed at the Poles $=\frac{0 \text { miles }}{24 \text { hours }}=\frac{0 \text { miles }}{\text { hour }}$
Speed at the Equator $=\frac{25,000 \text { miles }}{24 \text { hours }}=\frac{1042 \text { miles }}{\text { hour }}$
Speed at Sarasota $=$ cosine of latitude \times speed at equator
cosine of $27.5^{\circ}=0.887$

$$
0.887 \times 1042 \mathrm{mi} / \mathrm{hr}=924 \mathrm{mi} / \mathrm{hr}
$$

Speed of Earth's Revolution

Average Distance from Sun $=93,000,000$ miles $=$ Radius
Circumference of circle $=2 \pi r=2 \times 3.14 \times 93,000,000 \mathrm{mi}$. Distance Earth travels in a year $=584,000,000$ miles

Motion is Relative

- To measure motion you must have a reference point that is not moving* to compare motion with.
- Motion can change if you change the reference point.
- If you are driving in a car, the road is moving. If you are standing on the road, the car is moving. Motion is relative!

What is your speed as you sit still in your chair?

Reference Point	Speed
The ground	$0 \mathrm{mi} . / \mathrm{hr}$
In space above the Earth	$920 \mathrm{mi} / \mathrm{hr}$
Above our solar system	$66,600 \mathrm{mi} / \mathrm{hr}$
Above the Milky Way	$558,000 \mathrm{mi} / \mathrm{hr}$
Traveling thru space	$660,000 \mathrm{mi} / \mathrm{hr}$

Speed

- Speed is the amount of distance covered per unit of time.
- The formula for speed is: Speed = Distance Time
- By rearranging the formula you can solve for time or distance.
Time $=\frac{\text { Distance }}{\text { Speed }}$ Distance $=$ Speed \times Time
- Speeds can be in mi/hr, km/hr, ft/s, m/s, cm/s... any unit of distance per unit of time.

The North American Eagle (39,000 HP) set the land speed record in 2002 by going $763 \mathrm{mi} / \mathrm{hr}$. At this speed you travel I mile in 5 seconds.

Converting units with DA

The speed of sound is 760 miles per hour. Convert this speed to feet per second.

Step I: Write the speed as a fraction.
Step 2: Use a conversion factor to convert miles to feet.
Step 3: Use a conversion factor to convert hrs to minutes.
Step 4: Use a conversion factor to convert min. to sec.
Step 5: Cancel units and multiply through.

A cheetah, the fastest land animal, is capable of running 67 miles per hour. How many feet per second is this?

$67 \mathrm{mi} / \mathrm{hr}=98 \mathrm{ft} / \mathrm{sec}$

In 1988, Carl Lewis set an Olympic record by running
100.00 meters in 9.92 seconds. Using 1.00 kilometer $=0.621$ mile, calculate Carl Lewis' speed in mi/hr.
I. Write the given as a fraction.
2. Convert I 00.00 m to km , then km to mi .
3. Convert 9.92 seconds to minutes, then minutes to hours. 4. Multiply through. Use sig figs in your answer.

\section*{A car drive 178 mi in} 2 hours and 17 minutes? What was its speed? | 17 minutes | I hour |
| :---: | :---: |
| I | 60 minutes |

0.28 hr .

$178 \mathrm{mi} / 2.28$ hours $=$ 78.1 mi/hr

Velocity

- Velocity is speed in a certain direction.
- The formula is:

$$
\mathrm{V}=\frac{\text { distance }}{\text { time }}+\text { Direction }
$$

- Velocity is important to ships, planes, rockets... where the direction you are traveling is just as important as speed you are going.
- Examples of velocity are: m/s East $\mathrm{km} / \mathrm{hr}$ NorthEast $\mathrm{mi} / \mathrm{hr}$ West

Acceleration

- Acceleration is a change (increase or decrease) in velocity over a period of time.
- To calculate acceleration you subtract the initial velocity from the final velocity and divide the difference by the time it took the change to occur.
- The formula is written as:
$\frac{\text { Final Velocity - Original Velocity }}{\text { Time for change to occur }}$ or $\frac{\Delta V}{t}$
- A delta sign, Δ, means "a change in".
- Examples of acceleration: m/s/s, km/hr/s, mi/hr/s...

Acceleration Problem

What is the acceleration of a car that accelerates from 40 mph to 70 mph in 3.6 seconds? Step 1: Determine what formula you will use.

$$
a=\frac{V f-V i}{t}
$$

Step 2: Isolate your variables.
$V f=70 \mathrm{mi} . / \mathrm{hr} \quad \mathrm{Vi}_{\mathrm{i}}=40 \mathrm{mi} . / \mathrm{hr} \quad \mathrm{t}=3.6 \mathrm{sec}$.
Step 3: Plug in the values and solve.
$70 \mathrm{mi} / \mathrm{hr}-40 \mathrm{mi} . / \mathrm{hr}=30 \mathrm{mi} . / \mathrm{hr}$
$30 \mathrm{mph} / 3.6 \mathrm{sec}=8.3 \mathrm{miles} / \mathrm{hr} . \mathrm{sec}$.

Acceleration

A brainless skateboarder rolls down a ramp in 3.8 s . then across a 33 meter road in 2.4 s .
At what rate did he accelerate down the ramp?
I. Draw a diagram to help you better understand the problem.

$$
\mathrm{t}=3.8 \mathrm{~s}
$$

2. Write the formula for acceleration.

$$
a=\frac{v_{f}-V_{i}}{t}
$$

3. Solve forVf. $33 \mathrm{~m} / 2.4 \mathrm{~s}=14 \mathrm{~m} / \mathrm{s}$
4. Identify your variables: $\mathrm{Vf}=14 \mathrm{~m} / \mathrm{s}, \mathrm{Vi}=\mathrm{O} \mathrm{m} / \mathrm{s}, \mathrm{t}=3.8 \mathrm{~s}$
5. Solve for acceleration: $\frac{14 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{3.8 \mathrm{~s}}=3.7 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

Vectors

In Physics, vectors
(arrows) are used to
show the size and direction of a force acting on an object.

Vectors are arrows that show size and directions of forces.

Centripetal Force

Centripetal force is any force that causes an object to move in a circle. A centripetal force is the force that is pulling on the object from the center of the circle causing the object not to move, as inertia would cause, in a straight line.
The centripetal force that keeps the Earth and other planets in orbit around the sun is the gravitational attraction of the sun.

Key: force of inertia force of gravity resulting motion

Momentum $M_{\text {em }}=m \times v$

- Momentum is the energy of a moving object.
- The formula for momentum is mass x velocity. Mass must be in kilograms while velocity must be in $\mathrm{m} / \mathrm{s}+$ direction.
- When two object collide, momentum is conserved. The total amount of momentum remains the same.
- The formula can be rearranged to solve for mass ($M_{\text {om }} / v$) or velocity ($M_{\text {om }} / m$)

Momentum

What motion will occur when these two football players collide?

Inertia

Examples of Inertia:

The resistance of an object to change its motion.

Friction

Friction occurs whenever two surfaces come in contact with each other.

You can reduce the force of friction on Earth but you cannot eliminate it.

Friction always acts in the opposite direction of motion.

4 Types of Friction

Friction caused when an
object slides or rubs against another surface.

4 Types of Friction

Friction

 between a rolling object and the surface it rolls on.
4 Types of Friction

4 Types of Friction 4

The friction between two solid objects that are not moving relative to each other.

Friction can be Helpful

Auto brakes

Without friction you would not be able to turn a door knob, food wouldn't stay on your fork... friction can be good.

Friction can be Harmful

Rug Burn

Air resistance

Worn Shoes

Friction always converts moving energy to heat \& wears down surfaces.
Lubricants
are used to reduce friction.

Surface Friction Lab

In this lab you will rate

 several surfaces by the amount of friction they produce when you drag a 0.5 kg . mass across them.
Surface Friction Lab

You will measure force in Newtons.

(Force $=$ mass \times acceleration) 1 Newton of force is required to cause a 1.0 kg mass to accelerate at a rate of $1.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.

Friction Data Table

Surface	Force Trial 1	Force Trial2	Force Trial 3	Force Trial 4	Average force of Friction
carpet					
bare floor					
wood					
lab table					
copper					
rubber					

Friction Ranking

Ranking	Surface
1 highest friction (most newtons)	
2	
3	
4	
5	
6 lowest friction (least newtons)	

Surface Friction Lab

Title: Surface Friction

Purpose: To measure the amount of sliding friction on six surfaces and then rate the surfaces from highest to lowest friction.

Materials: Newton scale,
0.5 kg . mass, six surfaces.

Surface Friction Lab

Procedure:

1. Place the 0.5 kg . mass on a surface.
2) Attach the Newton scale to the mass.
3) Slowly pull on the scale until the mass moves.
4) Record the force required to move the mass.
5) Repeat 4 times and average (recording each).
6) Repeat Steps $1-5$ with all 6 surfaces.
7) Rank your surfaces from: 1 (highest sliding friction) to 5 (lowest sliding friction).

Surface Friction Lab

Writeup you lab neatly in ink

 or typed. Staple your rough draft to the back of your final draft. Lab due Monday.

Speed, Velocity \& Acceleration Lab

PreLab Discussion

Speed, Velocity \& Acceleration Lab

View from the top

Acceleration down ramp

Constant speed across table

100.00 cm

The ball going down ramp is accelerating while the ball going across table is moving at a constant velocity. The speed the ball goes across the table is the final velocity off the ramp.
$\mathrm{t}_{2}=$ time going across table
100.00 cm
$\frac{d}{t_{2}}=V_{f}$
Ramp
$\mathrm{t}_{\mathrm{i}}=$ time going down ramp

Directions

- Get a stamp once your group is done collecting the data.
- Measure all distances in cm.
- Wear your stopwatch around your neck to prevent from breaking it. Do not play with it use it only to take lab times.
- The small numbers on the stopwatch are in hundredths of a second. $00 \mathrm{I}_{23}$ is 1.23 sec .
- When finish begin working on calculating final velocity and acceleration (show work).

Acceleration Post Lab Discussion

v_{i}
V_{f}

If you could stop the ball going down the ramp every I/3 second, what it would the distance the ball traveled look like?

Acceleration down ramp

Show your work including units for:

- Final velocity
- Acceleration
- Draw lines on your graph to validate your answers to questions I, 2 and 3

Graphing your Lab data

Graph I: Final Velocity (y) vs. Ramp Height (x) Graph 2: Acceleration(y) vs. Ramp Height (x)
I. Graphs smaller than $2 / 3$ size of graph paper will not be accepted.
2. Use good scales ($0.1,0.2,0.25, .5,1 . .$.
3. Draw a linear curve of best fit for both graphs.
4. Draw a line to show how you interpolated or extrapolated answers to Q. I \& 2.
No lines - no credit!

Slope of a curve:
fertilizer's effect on plant growth To determine how much the y-axis changed per one $44.5 \mathrm{~cm} \frac{4}{44}$ change in your x axis.
In this instance, how many cm of plant growth will one gram of fertilizer produce? (cm) 38.4 cm Slope of the curve tells you that for every gram of fertilizer the plants grew 0.4 l cm. 44.5 cm 44

I. Select two points on your x-axis. Subtract them. Include units. (Δx) 15.0 g 2. Find the two corresponding values on the y-axis. Subtract them. $(\Delta y) 6.1 \mathrm{~cm}$
3. Divide $\Delta y / \Delta x$. Be sure to include units! $6.1 \mathrm{~cm} / 15.0 \mathrm{~g}=0.4 \mathrm{Icm} / \mathrm{g}$

Breaking the speed of sound

The speed of sound in air is $740 \mathrm{mi} / \mathrm{hr}$. When a jet goes faster than this it creates a sonic boom.

