Section 1 Aqueous Solutions and the Concept of pH

Objectives

Describe the self-ionization of water.

- Define pH , and give the pH of a neutral solution at $25^{\circ} \mathrm{C}$.
- Explain and use the pH scale.
- Given $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$, find pH
- Given pH , find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] or $\left[\mathrm{OH}^{-}\right]$

Chapter menu Resources

Chapter 15

Section 1 Aqueous Solutions and the Concept of pH

Hydronium lons and Hydroxide Ions,

 continuedSelf-Ionization of Water, continued

- At $25^{\circ} \mathrm{C}$,
$K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-7}\right)\left(1.0 \times 10^{-7}\right)=1.0 \times 10^{-14}$
- K_{w} increases as temperature increases

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	K_{w}
0	1.2×10^{-15}
10	3.0×10^{-15}
25	1.0×10^{-14}
50	5.3×10^{-14}

Hydronium Ions and Hydroxide Ions Self-lonization of Water

- In the self-ionization of water, two water molecules produce a hydronium ion and a hydroxide ion by transfer of a proton.
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- In water at $25^{\circ} \mathrm{C},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$ and $\left[\mathrm{OH}^{-}\right]=$ $1.0 \times 10^{-7} \mathrm{M}$.
- The ionization constant of water, K_{w}, is expressed by the following equation.

$$
K_{w}=\mathrm{IH} O
$$

$$
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

Chapter menu Resources

Chapter 15 the Concept of pH

Hydronium lons and Hydroxide lons, continued
Neutral, Acidic, and Basic Solutions

- Solutions in which $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$is neutral.
- Solutions in which the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$are acidic.
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1.0 \times 10^{-7} \mathrm{M}$
- Solutions in which the $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$are basic.
- $\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7} \mathrm{M}$

Section 1 Aqueous Solutions and the Concept of pH

Hydronium lons and Hydroxide Ions, continued Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] and $\left[\mathrm{OH}^{-}\right]$

- Strong acids and bases are considered completely ionized or dissociated in weak aqueous solutions

$$
\mathrm{NaOH}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

$$
1 \mathrm{~mol} \quad 1 \mathrm{~mol} \quad 1 \mathrm{~mol}
$$

- $1.0 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$ solution has an $\left[\mathrm{OH}^{-}\right]$of $1.0 \times 10^{-2} \mathrm{M}$
- The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of this solution is calculated using K_{w}.

$$
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

Chapter menu Resources

Hydronium lons and Hydroxide lons,

continued

Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$

- If the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution is known, the $\left[\mathrm{OH}^{-}\right]$can be calculated using K_{w}.

$$
\begin{gathered}
{[\mathrm{HCl}]=2.0 \times 10^{-4} \mathrm{M}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.0 \times 10^{-4} \mathrm{M}} \\
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
\end{gathered}
$$

Section 1 Aqueous Solutions and

Some Strong Acids and Some Weak Acids

Asd	omuls	K, otacid	Coniupte bese	Furmue
A Hymaiamiso	H,	$538 \times 10^{\prime}$	men	H,
Hydrogen sulfate ioe	$\mathrm{HSO}_{\text {i }}$	123×10^{2}	muthat ine	Sot
Phoybaricesis	H, PO_{4}	2.8×10^{3}	Ghyydrogea shosphate ion	Hfois
Fermic mis	нсоон	$1.2 \times 10^{+}$	trume ive	нсоо
Brenic tad	$\mathrm{CHHCOOH}^{\text {che }}$	646×10^{5}	tematetion	CHHCOO^{-}
neatiosad	сн, соон	1.75×10^{8}	sceasi ion	$\mathrm{CH}_{4} \mathbf{0 0 0}$
Crtonicesis	$\mathrm{H}_{3} \mathrm{CO}$,	4.0×10^{7}		нсо;
	hrgos_{4}	$6.51 \times 10^{+7}$	monohydrogen phosphate ion	нго\% ${ }^{\text {\% }}$
Hppextures aid	ноа	$295 \times 10^{\circ}$	mypathates ioa	co-
Ammacimi ion	shi	585 $\times 10^{10}$	umman	NH,
Hydrogen capbonate	нсо,	4.6×10^{11}	cartomet ene	$\infty^{\circ}{ }^{\text {\% }}$
Monohydrogen phonphate ion	нrot ${ }^{\text {2 }}$	4.4×10^{-19}	proxplation	pot
Weter	$\mathrm{H}_{2} \mathrm{O}$	$1.81 \times 10^{\text {¹/ }}$	Intractic ion	оr
Canozete add	Femule	K,otasid	suse	Fermun

Chapter 15 the Concept of pH

Concentrations and K_{w}

Solution	$\left[\mathrm{H}_{3} \mathbf{O}^{+}\right](\mathbf{M})$	$\left[\mathrm{OH}^{-}\right](\mathbf{M})$	$\boldsymbol{K}_{w}=\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
Pure water	1.0×10^{-7}	1.0×10^{-7}	1.0×10^{-14}
0.10 M strong acid	1.0×10^{-1}	1.0×10^{-13}	1.0×10^{-14}
0.010 M strong acid	1.0×10^{-2}	1.0×10^{-12}	1.0×10^{-14}
0.10 M strong base	1.0×10^{-13}	1.0×10^{-1}	1.0×10^{-14}
0.010 M strong base	1.0×10^{-12}	1.0×10^{-2}	1.0×10^{-14}
0.025 M strong acid	2.5×10^{-2}	4.0×10^{-13}	1.0×10^{-14}
0.025 M strong base	4.0×10^{-13}	2.5×10^{-2}	1.0×10^{-14}

Chapter 15
 Section 1 Aqueous Solutions and

 the Concept of pHHydronium lons and Hydroxide Ions, continued
Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] and $\left[\mathrm{OH}^{-}\right]$
Sample Problem A
A $1.0 \times 10^{-4} \mathrm{M}$ solution of HNO_{3} has been prepared for a laboratory experiment.
a. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of this solution.
b. Calculate the $\left[\mathrm{OH}^{-}\right]$.

Section 1 Aqueous Solutions and

Hydronium lons and Hydroxide lons, continued
Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$, continued
Sample Problem A Solution, continued
a.
b. $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$

Chapter 15

Section 1 Aqueous Solutions and the Concept of pH

Hydronium lons and Hydroxide Ions, continued
Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$, continued
Sample Problem A Solution
Given: Concentration of the solution $=1.0 \times 10^{-4} \mathrm{M} \mathrm{HNO}_{3}$
Unknown: a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Solution:

- HNO_{3} is a strong acid

Chapter menu Resources

Chapter 15 the Concept of pH

Hydronium lons and Hydroxide lons, continued
Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$, continued
Sample Problem A Solution, continued
a.
b.

$$
1.0 \times 10^{-4} \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}
$$

Section 1 Aqueous Solutions and the Concept of pH

The pH Scale

- The $\mathbf{p H}$ of a solution is defined as the negative of the common logarithm of the hydronium ion concentration, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

- example: a neutral solution has a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7}$
- The logarithm of 1×10^{-7} is -7.0 .
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1 \times 10^{-7}\right)=-(-7.0)=7.0 \begin{gathered}\text { End } \\ \text { side. }\end{gathered}$
Chapter menu Resources

Chapter 15

Section 1 Aqueous Solutions and the Concept of pH

pH Values as Specified $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$]

Solution	$\left[\mathbf{H}_{3} \mathbf{O}^{+}\right](\mathbf{M})$	$\mathbf{p H}$
$1.00{\mathrm{~L} \mathrm{of} \mathrm{H}_{2} \mathrm{O}}$	1.00×10^{-7}	7.00
0.100 mol HCl in 1.00 L of $\mathrm{H}_{2} \mathrm{O}$	1.00×10^{-1}	1.00
0.0100 mol HCl in 1.00 L of $\mathrm{H}_{2} \mathrm{O}$	1.00×10^{-2}	2.00
0.100 mol NaCl in $1.00{\mathrm{~L} \text { of } \mathrm{H}_{2} \mathrm{O}}^{1.00 \times 10^{-7}}$	7.00	
0.0100 mol NaOH in $1.00{\mathrm{~L} \text { of } \mathrm{H}_{2} \mathrm{O}}^{1.00 \times 10^{-12}}$	12.00	
0.100 mol NaOH in 1.00 L of $\mathrm{H}_{2} \mathrm{O}$	1.00×10^{-13}	13.00

Chapter menu Resources
Resoures

Chapter 15 Visual Concepts
pOH

Chapter 15 the Concept of pH

Approximate pH Range of Common Materials

Material	pH	Material	pH
Gastric juice	$1.0-3.0$	Pread	$5.0-6.0$
Lemons	$2.2-2.4$	Rainwater	$5.4-5.8$
Vinegar	$2.4-3.4$	Potatoes	$5.6-6.0$
Soft drinks	$2.0-4.0$	Milk	$6.3-6.6$
Apples	$2.9-3.3$	Saliva	$7.5-7.5$
Grapefruit	$3.0-3.3$	Pure water	$7.3-7.5$
Oranges	$3.0-4.0$	Blood	$7.6-8.0$
Cherries	$3.2-4.0$	Eges	$8.0-8.5$
Tomatoes	$4.0-4.4$	Sea water	10.5
Bananas	$4.5-5.7$	Milk of magnesia	

Chapter 15 Visual Concepts

Comparing pH and pOH
[$\mathrm{H}_{3} \mathrm{O}^{+}$], [OH^{-}], pH and pOH of Solutions

Solution	General condition	At $\mathbf{2 5}{ }^{\circ} \mathbf{C}$
Neutral	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7} \mathrm{M}$
	$\mathrm{pH}=\mathrm{pOH}$	$\mathrm{pH}=\mathrm{pOH}=7.0$
Acidic	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1 \times 10^{-7} \mathrm{M}$
	$\mathrm{pH}<\mathrm{pOH}$	$\left[\mathrm{OH}^{-}\right]<1 \times 10^{-7} \mathrm{M}$
		$\mathrm{pH}<7.0$
		$\mathrm{pOH}>7.0$
Basic	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<1 \times 10^{-7} \mathrm{M}$
	$\mathrm{pH}>\mathrm{pOH}$	$\left[\mathrm{OH}^{-}\right]>1 \times 10^{-7} \mathrm{M}$
		$\mathrm{pH}>7.0$
		$\mathrm{pOH}<7.0$

Section 1 Aqueous Solutions and the Concept of pH

Calculations Involving pH

- There must be as many significant figures to the right of the decimal as there are in the number whose logarithm was found.
- example: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7}$
one significant figure
$\mathrm{pH}=7.0$

Section 1 Aqueous Solutions and

Calculations Involving pH, continued

 Calculating pH from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, continued
Sample Problem B

What is the pH of a $1.0 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$ solution?

Section 1 Aqueous Solutions and the Concept of pH

Using Logarithms in pH Calculations
It is easy to find the pH or the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution by using a
scientific calculator. Because calculators differ, check your manu
scientific calculator. Because calculators differ, check your manual
to find out which keys are used for \log and antilog functions and
of find out which keys are used for log and antilog functions and
to use these functions

1. Calculating pH from $\left[\mathrm{H}_{3} \mathrm{O}^{-}\right]$

Use the definition of pH
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

- Take the logarithm of the hydronium ion concentration
- Change the sign (+ The

2. Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{\prime}\right]$ from PH

If you rearrange $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$to solve for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, the
equation becomes
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{ph}}$
Change the sign of the $\mathrm{pH}(+/-)$
Raise 10 to the negative pH power (take the antilog).
The result is $\left[\mathrm{H}_{3} \mathrm{O}^{\circ}\right]$.
Chapter menu Resources

Section 1 Aqueous Solutions and the Concept of pH

Calculations Involving pH, continued

 Calculating pH from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, continued
Sample Problem B Solution

Given: Identity and concentration of solution $=1.0 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$
Unknown: pH of solution
Solution: concentration of base \rightarrow concentration of OH^{-}

$$
\rightarrow \text { concentration of } \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{pH}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.0 \times 10^{-11}\right)=11.00
$$

Chapter 15
 Section 1 Aqueous Solutions and

 the Concept of pH
Calculations Involving pH, continued

 Calculating pH from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, continued- $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- $\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\mathrm{pH}$
- $\left[\mathrm{H}_{3} \mathrm{O}+\right]=$ antilog (-pH)
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
- The simplest cases are those in which pH values are integers.

Chapter 15

Section 1 Aqueous Solutions and

Calculations Involving pH, continued Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$from pH , continued
Sample Problem D Solution
Given: $\mathrm{pH}=4.0$
Unknown: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Solution:

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-4} \mathrm{M}}
\end{gathered}
$$

Section 1 Aqueous Solutions and the Concept of pH

Calculations Involving $\mathbf{p H}$, continued

 Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$from pH , continued
Sample Problem D

Determine the hydronium ion concentration of an aqueous solution that has a pH of 4.0.

Chapter $15 \quad \begin{aligned} & \text { Section } 1 \text { Aqueous } \\ & \text { the Concept of } \mathrm{pH}\end{aligned}$
Calculations Involving pH, continued pH Calculations and the Strength of Acids and Bases

Solution			
$1.0 \times 10^{-2} \mathrm{M} \mathrm{KOH}$	1.0×10^{-12}	1.0×10^{-2}	12.00
$1.0 \times 10^{-2} \mathrm{MNH}_{3}$	2.4×10^{-11}	4.2×10^{-7}	0.63
Pure $\mathrm{H}_{2} \mathrm{O}$	1.0×10^{-7}	1.0×10^{-7}	7.00
$1.0 \times 10^{-3} \mathrm{M} \mathrm{HCl}$	1.0×10^{-3}	1.0×10^{-11}	3.00
$1.0 \times 10^{-1} \mathrm{MCH}_{3} \mathrm{COOH}$	1.3×10^{-3}	7.5×10^{-12}	2.87

- The pH of solutions of weak acids and weak bases must be measured experimentally.
- The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$can then be calculated from the measured pH values.

Chapter $15 \begin{aligned} & \text { Section } 1 \text { Aqueous } \\ & \text { the Concept of } \mathrm{pH}\end{aligned}$
 pH of Strong and Weak Acids and Bases

Solution	$\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$	$\left[\mathbf{O H}^{-}\right]$	$\mathbf{p H}$
$1.0 \times 10^{-2} \mathrm{M} \mathrm{KOH}$	1.0×10^{-12}	1.0×10^{-2}	12.00
$1.0 \times 10^{-2} \mathrm{M} \mathrm{NH}_{3}$	2.4×10^{-11}	4.2×10^{-4}	10.62
Pure $\mathrm{H}_{2} \mathrm{O}$	1.0×10^{-7}	1.0×10^{-7}	7.00
$1.0 \times 10^{-3} \mathrm{M} \mathrm{HCl}^{2}$	1.0×10^{-3}	1.0×10^{-11}	3.00
$1.0 \times 10^{-1} \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$	1.3×10^{-3}	7.7×10^{-12}	2.88

